

WIN-PROLOG 8.1

The contents of this manual describe the product, BDS-PROLOG for Windows (hereinafter
called WIN-PROLOG) and one or more of its LPA Toolkits, and are believed correct at the time
of going to press. They do not embody a commitment on the part of Logic Programming
Associates (LPA), who may from time to time make changes to the specification of the
product, in line with their policy of continual improvement. No part of this manual may be
reproduced or transmitted in any form, electronic or mechanical, for any purpose without
the prior written agreement of LPA.

Copyright (c) 2025 Logic Programming Associates Ltd. All Rights Reserved.

Authors: Rebecca Shalfield, Clive Spenser, Brian D Steel and Alan Westwood

Logic Programming Associates Ltd
PO Box 226
Cranleigh
Surrey
GU6 9DL
England

phone: +44 (0) 20 8871 2016

web site: http://www.lpai.uk

BDS-PROLOG and WIN-PROLOG are trademarks of Brian D Steel, Surrey, England.

LPA Toolkits is a trademark of Logic Programming Associates Ltd, London, England.

01 May 2025

Contents

Programming Guide

3

Contents

Programming Guide Contents

WIN-PROLOG Programming Guide ..2

Contents ...3

Programming Guide Contents ...3

List of Tables ...12

Introduction...14

Features of WIN-PROLOG...14

Notation Conventions ...15

Predicate Definitions...15

Mode Declarations..15

Prolog Listings ...15

Argument References ..15

Tables of Information ..15

Predicate References ...16

References..16

Syntax ..17

Character Set ..17

Separators and Terminators ..17

Comments ..18

Terms...18

Variable Names..18

Integers ..19

Floating Point Numbers...19

Number Bases...19

Contents

Programming Guide

4

Atoms ..20

Alphanumeric Atoms..20

Symbolic Atoms ..20

Quoted Atoms...21

Special Atoms ...21

Strings ..21

Compound Terms ..23

Tuples...23

Lists..24

Conjunctions ...24

Disjunctions...25

Char Lists ..25

Operators..26

Prefix Operators...26

Postfix Operators ...26

Infix Operators ...27

Operator Precedence ...27

Operator Types..28

Declaring Operators ...29

Program Structure ...29

Clauses...30

Grammar Rules ...32

Commands ...32

Meta-variables ...33

Extended Meta-variable Facilities in WIN-PROLOG33

Condition Meta-variable...34

Predicate Meta-variable...34

Contents

Programming Guide

5

Arithmetic ...36

Predicates Related to Arithmetic..36

Arithmetic Expressions ...37

Pseudo Random Number Generator...39

The Linear Congruential Method...40

Seeding the Prang ...40

Randomising the Prang ..41

Timing ..42

Predicates Related to Timing...42

Getting the System Date ..42

Timing Programs and Time Stamps ...42

Configuration Options ...43

Predicates Related to Configuration Options..43

Turning Style Checking On and Off...43

Turning the Reporting of File Errors On and Off..44

Changing or Getting the Prolog Read Prompt ..44

Retrieving or Setting a WIN-PROLOG Switch ..44

System flags ...44

Control..47

Predicates Related to Control ..47

Controlling Backtracking..48

Conjunction ...48

Disjunction ..49

If-Then ..49

If-Then-Else ...49

Negation as Failure...49

Forcing Failure ...51

Contents

Programming Guide

6

Success..51

Repeating Sequences of Clauses...51

Aborting Programs ...52

Suspending Programs ..52

Terminating Prolog ...52

Debugging ..53

Predicates Related to Debugging...53

Setting the Current Debugger ...54

Tracing and Debugging Programs ..54

Setting Spypoints...54

Setting and Checking the Interaction with the Debugger54

Program Style Checking ...54

Timing Programs..55

Definite Clause Grammar ..56

Predicates Related to Definite Clause Grammar...56

Grammars...57

Parsing and Parse Trees ...58

Grammar Notations ..59

DCG Notation...60

A Simple Example..61

Adding Extra Arguments to DCG Rules ...63

Adding Extra Tests to DCG Rules ...65

A More Complex Example ...66

The Prolog Representation of the Grammar Rules67

Terminal Symbols on the Left-Hand Side of a Rule.......................................69

Dictionaries ...70

Predicates Related to Dictionaries..70

Contents

Programming Guide

7

The Atom Dictionary...70

The File Dictionary..70

The Predicate Dictionary ...71

DOS Handling ..72

Predicates Related to DOS Handling...72

Running a DOS shell ..72

Running a Command..72

Retrieving Command-Line Switches ...73

Getting Information about WIN-PROLOG ..73

Error Handling..74

Predicates Related to Error Handling ..74

Defining Your Own Error Handler ..74

Aborting the Current Evaluation ...75

Flushing the Input Buffer ...75

Defining an Unknown Predicate Handler..75

Getting the Error Messages and Their Numbers...75

Catching and Throwing Errors ..76

Error Handling - An Example..76

Files and Directories...77

Predicates Related to Files and Directories ...77

Low-Level Vs Logical Filenames ...78

Logical File Handling ...79

The File Search Path Mechanism ...79

Getting Absolute Filenames ..79

Opening Files ..79

Closing Files ..79

Low-level File Handling..79

Contents

Programming Guide

8

Garbage Collection and Memory ..80

Predicates Related to Garbage Collection and Memory.................................80

Determining Free Memory ..80

Garbage Collection ...81

Getting Program Space Statistics...81

Getting Version statistics ..82

Input and Output..83

Predicates Related to Input and Output ..83

Predicates for Setting I/O Streams ...83

Predicates for Temporarily Redirecting I/O ..83

Predicates for Positioning File Pointers ...83

Formatted I/O Predicates ..84

Character I/O Predicates ...84

Predicates for Outputting Format Characters.....................................86

Predicate for Copying Data From File To File86

Keyboard and Screen I/O ..86

Sound Output..87

Standard and Current I/O Streams ...87

Setting I/O Streams..87

Temporarily Redirecting I/O ...89

Positioning File Pointers ..89

Testing Input Boundary Conditions ...89

Finding Text in an Input Stream ...90

Setting the Stream Pointer Positions ..91

Formatted I/O ..91

Character I/O ...91

Outputting Format Characters ...91

Contents

Programming Guide

9

Copying Data From File To File ..91

Keyboard Input ..91

Interpreting Control Keys ..92

Sound Output..92

List Handling ..93

Predicates Related to List Handling ..93

Loading and Saving ..94

Predicates Related to Loading and Saving...94

Loading Source-Code Files and Object-Code Files..95

Running Goals Upon Loading...95

Loading Predicates From a Source File as Dynamic96

Predicates Defined In More Than One File ...96

Saving Files ...96

Maintaining Source Files..96

Abolishing Files..97

Looking at the Program State ..98

Predicates Related to Looking at the Program State98

Predicates and Properties ...98

Currently Defined Atoms...99

Currently Defined Operators ..99

Getting the Type and Arity of a Predicate..99

Getting the Arity of Currently Defined Predicates ...99

Meta-Programming...100

Predicates Related to Meta-Programming ...100

Meta-Programming...101

Sets of Solutions..102

Predicates Related to Sets of Solutions ..102

Contents

Programming Guide

10

Sets and Bags ...102

String Handling ..103

Predicates Related to String Handling...103

Atoms and Char lists ..103

Strings ..104

Properties of the Text Data Types ..104

Atom, Char list and String Conversions...105

Strings and Window Handling ..105

Window Handling in WIN-PROLOG and DOS-PROLOG105

Strings and Input/Output...106

Term Comparison and Sorting ...107

Predicates Related to Term Comparison and Sorting....................................107

Unify...107

Comparison...107

Ordering ...107

Length ..108

Sorting..108

Checking...108

Sorting..108

Standard Ordering..108

Sorting on Keys ...109

Sorting and Duplicate Removal..110

Checking...111

Term Conversion ...112

Predicates Related to Term Conversion ..112

Converting Between Atoms and Char lists ..113

Converting Between Atoms and Strings ...113

Contents

Programming Guide

11

Converting Between Char lists and Strings..113

Term Input and Output ...114

Predicates Related to Term Input and Output..114

Maintaining Variable Names During The I/O Of Terms115

Declaring Operators ...116

Term Type Checking ..117

Predicates Related to Term Type Checking...117

Type Checking Predicates ...118

Testing For an Integer Between Bounds ...118

Switching According to The Types Of Terms ...118

The Clause Database..119

Predicates Related to The Clause Database ..119

Compiled, Optimized, Static and Dynamic Predicates120

Types of Compilation ..122

Incremental Compilation: Clause by Clause...122

Hashed Compilation: Instant Access...122

Optimised Compilation: Relation by Relation ...123

First Argument Indexing..123

The Comparison: Head to Head ...124

The Optimising Compiler...126

Predicates Related to The Optimising Compiler ...126

First Argument Indexing..126

Multiple Argument Indexing in the Optimising Compiler................................128

Checking the Index of a Predicate..129

Data Compression and Encryption ...130

Predicates related to data compression and encryption................................130

Abort LZSS Compression...130

Contents

Programming Guide

12

The stuff/3 and fluff/3 Predicates..130

About MZSS Encryption...131

The encode/2 and decode/2 Predicates ...131

Built-in Dialogs...132

Predicates Related to Dialogs ..132

Message Box ...133

Programmable Hooks and Handlers ...134

WIN-PROLOG Hooks..134

Error Hook...135

Keyboard Break Hook ...136

Debug Hook ..136

Abort Hook..137

Appendix A - System Operators ..139

Index ..142

List of Tables

Table 1 - mode declaration symbols ...15

Table 2 - symbolic atoms...20

Table 3 - special atoms ...21

Table 4 - operator types and meanings ...28

Table 5 - basic arithmetic functions...38

Table 6 - trigonometric functions ..38

Table 7- logarithmic functions...38

Table 8- truncation functions ..39

Table 9 - is/2 integer bitwise arithmetic functions ...39

Table 10 - random number function..40

Table 11 - prolog flags for defining file extensions ..45

Table 12 - prolog flag for setting the debugger...45

Table 13 - prolog flag for write_term/2 ..45

Table 14 - prolog flag for setting the system unknown predicate handling.................46

Table 15 - the properties of atoms, char lists and strings104

Contents

Programming Guide

13

Table 16 - Programmable hook names and their built-in equivalents134

Table 17 - WIN-PROLOG built-in operators..141

14 Introduction

Programming Guide

Introduction

Welcome to WIN-PROLOG: a Prolog designed to run on the Windows platform with the
ability to access as much memory as is available on your machine. WIN-PROLOG is a
flexible system, providing all the features expected of a general purpose programming
language. With its fast incremental compiler WIN-PROLOG allows you to develop
Prolog programs interactively. This interactive mode of development enables the rapid
prototyping of Prolog applications. WIN-PROLOG also offers an optimising compiler
that generates compact and efficient object code.

This manual is a companion to the 'Technical Reference'. Outlined here are the logical
groupings and subjects of the WIN-PROLOG predicates (documented in the 'Technical
Reference' in alphabetical order). The manuals provided with WIN-PROLOG do not try
to teach you how to program in Prolog. If you would like to learn more about Prolog,
then the books mentioned in the reference section at the end of this chapter may
prove helpful.

Features of WIN-PROLOG

The syntax supported by WIN-PROLOG is the industry standard "Edinburgh Syntax"
(also known as the DEC-10 syntax). In addition WIN-PROLOG provides other built-in
predicates which support:

· Quintus Prolog Compatibility.

· Double precision floating point arithmetic.

· Formatted input and output.

· Logical file handling.

· List sorting, concatenation and membership.

· Definite Clause Grammars (DCG).

· Graphics handling.

· Extensive Operating System interfaces (DOS/Windows/Macintosh).

· Graphical User Interface (GUI) handling (Windows/Macintosh).

· Memory files.

· Calling Windows system API or 32-bit DLL functions.

· Encryption.

· Data compression.

Introduction 15

Programming Guide

Notation Conventions

Predicate Definitions

When predicate definitions are given, the functor, arguments and positions of the
arguments of the predicate are shown as a template such as:

foo(+Arg1, ?Arg2, -Arg3)

This defines a predicate called �foo� that can take three arguments. The character that
precedes each argument name is a mode declaration.

Mode Declarations

The possible "mode declarations" characters, and their meanings, are given in Table 1 -
mode declaration symbols:

+ Denotes an input argument. It must be instantiated by the time
the predicate is called.

- Denotes an output argument. The argument must be an
uninstantiated variable when the predicate is called. If the
predicate succeeds, the argument will be bound to the return
value.

? Denotes an input or output argument. The argument may be
instantiated or uninstantiated.

Table 1 - mode declaration symbols

Prolog Listings

Listings of Prolog programs and examples of Prolog queries are shown in 'Courier
New' font. The text that you actually type in is shown in bold. Text that is output by
WIN-PROLOG and supplementary comments are shown in plain text.

?- X = [this,is,a,'PROLOG',list].

Horizontal ellipses (�) are used as a shorthand in examples to indicate that any
number of items may be entered.

foo(arg1, arg2, …, argn) (n < 1)

denotes a compound term with at least one argument.

Argument References

When the arguments that appear in the predicate templates are referred to in the body
text, they appear capitalized and italicised.

Tables of Information

Tables of information are shown in 'GillSans' font.

16 Introduction

Programming Guide

Predicate References

References to predicates in the main text appear italicised and are generally given in
functor/arity form, such as: foo/2.

References

K.L.Clark and F.G.McCabe. micro-PROLOG: Programming in Logic. Prentice-Hall
International, 1984. (This book does not describe the Edinburgh syntax.)

W.F.Clocksin and C.S.Mellish. Programming in Prolog. Springer Verlag.

I.Bratko. Prolog Programming For Artificial Intelligence. Addison-Wesley Publishing
Company.

R.A.Kowalski. Logic For Problem Solving. Artificial Intelligence series. North Holland Inc.

T.Dodd. Prolog: A Logical Approach. Oxford University Press

Logic Programming Associates Ltd do not endorse these books or recommend them
over others on the same subject.

Syntax 17

Programming Guide

Syntax

In this chapter we describe the Edinburgh syntax of WIN-PROLOG . This syntax is
essentially the syntax of the book - Programming in Prolog by W.F.Clocksin and
C.S.Mellish (published by Springer-Verlag).

Character Set

WIN-PROLOG has full "Unicode" support. Internally, WIN-PROLOG can handle any 32-
bit character code. All the characters with special meaning to WIN-PROLOG syntax are
confined to the first 128 characters (the 7-bit ASCII character set). The characters with
character codes above 127 contain international characters, accents, and graphics
characters.

16'00000000 16'FFFFFFFF

16'000000 16'10FFFF

16'0000 16'FFFF

16'00 16'FF

16'00 16'7F
7-bit

8-bit

16-bit

20.1-bit

32-bit"RAW"

ASCII

(ISO/IEC 8859-1)

Unicode 3

Unicode

"ISO"

16'D800-16'DFFF

16'D800-16'DFFF

16'FFFE-16'FFFF

0
chars

128
chars

256
chars

65,536
chars

1,123,835
chars

4,294,967,296
chars

Separators and Terminators

The normal term separator is the comma. This is used to separate terms in lists and
argument lists. A space must be used to separate an operator from an operand if they
are both of the same token type (e.g. they are both alphanumeric tokens).

The usual term terminator is the full stop followed by a space or carriage return. (A full
stop not followed by a space or carriage return is treated as a symbolic atom - see
below.)

Note that a space between an atom and a left parenthesis, '(', is significant.

18 Syntax

Programming Guide

Comments

Comments have no effect on the behaviour of a program. In fact they are ignored
when a Prolog term or program is read in. There are two forms of comment:

1. A sequence of characters that begins with the symbol �/*� and ends with �*/� is
treated as a comment.

2. A sequence of characters that begins with the symbol �%� and ends with the
end-of-line character (carriage return) is treated as a comment.

The first type of comment allows a comment to extend over several lines. The second
type of comment is useful when commenting a single line. For example:

/*
this is a comment
*/
% so is this

Terms

Terms are the fundamental data types of WIN-PROLOG. They are the building blocks
from which Prolog clauses, and commands are constructed.

Here we describe the basic term types and their syntax: variable names, integers,
floating point numbers, atoms, strings (a unique WIN-PROLOG text data type) and
compound terms (i.e. lists and char lists (normally called strings in 'Edinburgh'
parlance)).

Variable Names

A variable name is an alphanumeric sequence of characters beginning with an upper
case letter (A-Z) or an underscore ('_'). The alphanumeric sequence can include '_' and
characters with character codes above 127. For example, the following are variable
names:

Anything _var _1 X Var1

Quoting with single quotes overrides the variable name convention. For example the
following are both quoted atoms:

'Anything' '_var'

An underscore on its own is an anonymous variable.

Syntax 19

Programming Guide

Integers

An integer is a number with no fractional part. It is written as a sequence of digits,
optionally preceded by a minus sign (-). Note that in WIN-PROLOG an integer is in the
range -2147483648 to 2147483647 (7FFFFFFFh).

The plus sign (+) must not be used to denote a positive integer. All positive integers
are written without a leading sign character. For example:

0 1 9821 -10 -64000

Floating Point Numbers

A floating point number is written as an optional minus sign (-) followed by a sequence
of one or more digits followed by a decimal point (.) followed by one or more digits,
optionally followed by an exponent. An exponent is written as e (or E) followed by an
optional minus sign followed by one to three digits.

As with integers, the plus sign (+) must not be used to denote a positive floating point
number. For example:

1.0 246.8091 -12.3 20.003e-10 -1.3E102

The following are not floating point numbers:

.9 % does not start with a digit

3e-22 % no decimal point

34.1 e3 % contains a space before the 'e'

-.7 % no digit after the minus sign

56.1e4.8 % exponent is not an integer

23. % no digit after the decimal point

Number Bases

You can enter numbers in a particular base in WIN-PROLOG using the ' notation. As in
the following examples:

?- X = 16'F. % a number in base 16
X = 15

?- ?- X = 2'10010101. % a number in base 2
X = 149

Incidentally you can also use this notation to give the character code of the character
following the quote sign, as in the following:

20 Syntax

Programming Guide

?- X = 0'a.
X = 97

Atoms

Atoms are text names that are used to identify data, programs, modules, files,
windows, and so on.

The maximum length of an atom is 1024 bytes (this does not necessarily mean 1024
characters as WIN-PROLOG supports Unicode). There are four types of atoms:
alphanumeric, symbolic, quoted and special atoms.

Alphanumeric Atoms

An alphanumeric atom is written as a lower case letter (a-z) followed by a sequence of
zero or more alphabetic characters (A-Z,a-z), digits (0-9) or underscores (_).

Note that characters with character codes above 127 are treated as lower case letters
in alphanumeric atoms. For example:

apple a1 apple_cart test_1_case

foo123 f_T1 fred longTable

Symbolic Atoms

A symbolic atom is written as a sequence of symbolic characters, and characters with
character codes above 7Fh (127). The symbolic characters are shown in Table 2 -
symbolic atoms:

$ & = - ^ ~ \ @
` : . / + * ? < >
Table 2 - symbolic atoms

The following are all symbolic atoms:

& &: ++ << >> <-- .. *-/*

Note that the /* appearing in the last example is not interpreted as the start of a
comment.

Syntax 21

Programming Guide

Quoted Atoms

A quoted atom is any sequence of characters surrounded by single quotes. To insert a
single quote character in a quoted atom use two adjacent single quote characters:

''

The tilde character (~) is used within quoted atoms as an escape character. Tilde
followed by a printable character in the range '@' to '_' is used to represent a control
character. For example:

'~I'

represents ctrl-I.

The tilde character can also be followed by a hexadecimal integer within brackets
representing the character code of a character. This can be useful for inserting
characters with a character code greater than 7Fh (127).

To insert a tilde in a quoted atom use ~~.

Examples

'Apple' '123' '~(0)' 'hello world'

'~Ibold~M~J' '~(41)' '~(FFFFffff)' 'don''t care'

The last example represents the atom:

don't care

Note that '~F' is not the same as '~(F)'.

Special Atoms

The special atoms are shown in the following table:

! ;
Table 3 - special atoms

Please note that the special "empty list" atom, "[]", is not a true atom in WIN-PROLOG.

Strings

The string is a text data type specific to WIN-PROLOG. The maximum length of a
string is approximately 3 gigabytes. A string is any sequence of characters surrounded
by backwards quotes.

22 Syntax

Programming Guide

To insert a backwards quote character in a string use two adjacent backwards quote
characters:

``

The tilde character (~) is used within strings as an escape character. Tilde followed by
a printable character in the range '@' to '_' is used to represent a control character. For
example:

`~I`

represents ctrl-I.

The tilde character can also be followed by a hexadecimal integer within brackets
representing the character code of a character. This can be useful for inserting
characters with a character code greater than 7Fh (127). To insert a tilde in a string
use ~~.

Examples

`Apple` `123` `~(0)` `hello world`

`~Ibold~M~J` `~(41)` `~(FFFFffff)` `don``t care`

The last example represents the string:

don`t care

Note that `~F` is not the same as `~(F)`.

Syntax 23

Programming Guide

Compound Terms

In WIN-PROLOG tuples, lists, char lists, conjunctions and disjunctions are compound
terms.

Tuples

A tuple (which is also a compound term) is a structured data item that consists of a
functor followed by a sequence of one or more arguments which are enclosed in
brackets and separated by commas. The general form of a tuple is:

functor(t
1
, t

2
, …, t

n
) n ≥ 1

functor is the functor. It can be an atom or a variable name. (For further details about
the use of a variable name as the functor please see the section below entitled "Meta-
variables").

The term ti represents the i'th argument of the tuple.

The arity of a tuple is the number of arguments it has (n in the example above). We
refer to functor with arity n using the notation:

functor/n

The following are examples of tuples:

likes(paul,prolog) % functor is likes (arity is 2)
read(X) % functor is read (arity is 1)
>(3,2) % functor is > (arity is 2)

A tuple can be thought of as representing a record structure. The functor represents
the name of the record, while the arguments represent the record fields.

Certain functors can be written as operators. For more information see the section
below entitled "Operators". Note: There must be no space between the functor and the
opening parenthesis of a tuple. For example:

likes (paul,prolog)

is not a legal tuple. Spaces between the arguments are allowed however:

likes(paul, prolog)

24 Syntax

Programming Guide

Lists

A list (which is also a compound term) is a sequence of terms of the form:

[t1,t2,…,tn] n ≥ 0

The term ti is the i'th element of the list. It can be any type of Prolog term. The
simplest form of list is the empty list (n = 0):

[]

The following example is a four element list:

[[a,list,of,lists],and,numbers,[1,2,3]]

Unknown elements of a list can be represented by variables. For example:

[X,Y,Z]

We also represent a list using the notation:

[t1, t2, …, ti | Variable] i ≥ 1

This list pattern represents a list that begins with the terms t1,t2,�,ti with the
remainder of the list (the tail) denoted by Variable.

For example the list pattern:

[Head|Tail]

could be unified with the list:

[1,2,3,4]

to give the variable bindings:

Head = 1
Tail = [2,3,4]

Conjunctions

A conjunction (which is also a compound term) is a sequence of terms of the form:

(t1,t2,…,tn) n ≥ 0

The term ti is the i'th element of the conjunction.

Syntax 25

Programming Guide

Disjunctions

A disjunction (which is also a compound term) is a sequence of terms of the form:

(t1|t2|…|tn) n ≥ 0

The term ti is the i'th element of the disjunction.

Char Lists

A char list (which is also a compound term) is a sequence of characters surrounded by
the double quotes character ("). It is simply an abbreviation for the list of decimal
integer character codes of the characters in the sequence. For example, the char list:

"A boy"

is simply a shorthand form of the list:

[65,32,98,111,121]

?- X = "A boy". <return>
X = [65,32,98,111,121]

To insert a double quote character in a char list use two adjacent double quote
characters:

""

As with quoted atoms the tilde character is used as an escape character, allowing you
to enter control characters in a char list. For example:

"~G"

represents the list:

[7]

(To insert a tilde in a char list use ~~.)

?- X = "A "" ~G ~~ boy". <return>
X = [65,32,34,32,7,32,126,32,98,111,121]

26 Syntax

Programming Guide

Operators

Operators allow you to use an alternative syntax for compound terms. There are three
types of operator: prefix, postfix and infix.

Prefix Operators

The compound term:

functor(term)

can also be written as:

functor term

if functor has been declared a prefix operator. For example, the built-in predicate spy/1
is a prefix operator which means that the following compound term can be entered:

spy my_module

This is equivalent to:

spy(my_module)

Postfix Operators

The compound term:

functor(term)

can also be written as:

term functor

if functor has been declared a postfix operator. For example, if is_male/1 has been
declared a postfix operator then you could enter the compound term:

paul is_male

This is equivalent to:

is_male(paul)

Syntax 27

Programming Guide

Infix Operators

The compound term:

functor(term1,term2)

can also be written as:

term1 functor term2

if functor has been declared an infix operator. For example, the built-in arithmetic
function '+' is an infix operator which means you can enter the compound term:

5 + 10

This is equivalent to the predicate:

+(5,10)

Note: in WIN-PROLOG there is no definition for the +/2 predicate (+ is simply an
argument given to the is/2 predicate). so entering this at the command line will give:

| ?- 5 + 10 .
! --------------------
! Error 20: Predicate Not Defined
! Goal : 5 + 10

Operator Precedence

Every operator has a precedence associated with it. This is an integer between 1 and
1200. It is used to disambiguate expressions that contain several operators. The lower
the precedence, the more strongly an operator binds to its arguments.

For example, the expression:

2 + 5 * 8

represents the term:

+(2,*(5,8))

Because '*' (whose precedence is 400) binds more strongly than '+' (precedence is
500). (Note that operators with a higher precedence appear at a higher level of the
compound term than lower precedence operators.) .

28 Syntax

Programming Guide

Operator Types

The type of an operator defines its associativity. It is used to disambiguate an
expression that contains two operators of the same precedence. If an operator is non-
associative then its arguments must be sub-expressions of strictly lower precedence
than the operator itself.

A left associative operator is one whose left hand argument may be a sub-expression
of the same precedence as the operator itself (it can also be lower). A right associative
operator is one whose right hand argument may of the same (or lower) precedence as
the operator. For example, the built-in operators '+' and '-' are both left associative infix
operators with a precedence of 500. This means that the expression:

10-5+2

represents the compound term:

+(-(10,5),2)

because the left hand argument of '+' can have the same precedence. The '-' operator
cannot have a right argument with the same precedence. This means that the
following compound term is not a valid interpretation of the above expression:

-(10,+(5,2))

because the right hand argument would have the same precedence as '-' itself (and '-'
is not right associative). The various types are shown in Table 4 - operator types and
meanings.

Operator Type Meaning
fx non-associative prefix operator
fy right associative prefix operator
xf non-associative postfix operator
yf left associative postfix operator
xfx non-associative infix operator
xfy right associative infix operator
yfx left associative infix operator
Table 4 - operator types and meanings

Note that these types indicate the associativity and position of an operator.

Syntax 29

Programming Guide

Declaring Operators

Operators are declared using the built-in predicate op/3. The form of this predicate is:

op(+Precedence, +Type, +Name)

where Precedence is the operator's precedence (an integer in the range 1 to 1200),
Type defines the operator type and associativity (e.g. fx), and Name is the name of the
operator (or a list of operator names). If Precedence is 0 then the operator declaration
for Name is cancelled.

Examples

The following examples show how some of the built-in operators are defined.

op(200, xfy, ^).
op(500, fx, [+, -]).

It is possible to have more than one operator of the same name. For example, the
built-in operator '+' is declared as both a prefix and an infix operator. The built-in
predicate current_op/3 can be used to find out what operators are currently defined.
The format of this predicate is:

current_op(?Precedence, ?Type, ?Name)

This succeeds if there is an operator called Name of type Type and with a precedence
of Precedence. It can be used to backtrack through the list of currently defined
operators.

Examples

current_op(X, Y, Z).
current_op(500, X, Y).

Program Structure

In this section we describe the syntax of WIN-PROLOG programs. A Prolog program is
made up of one or more of the following program elements:

· clauses

· grammar rules

· commands

We describe the format of these program elements in turn.

30 Syntax

Programming Guide

Clauses

Clauses are the building blocks of Prolog programs. There are two types of clause:
facts and rules.

A fact is of the form:

head.

where head is the head of the clause. head may be an atom or a compound term
whose functor is any atom except :-. A fact is terminated by a '.' followed by a white
space character (e.g. a space, or a carriage return).

A rule is of the form:

head :- t1, t2, …, tk. (k ≥ 1)

where head is the head of the clause and the terms to the right of �:-� are the body of
the clause. Each tk is known as a call term or goal. A call term must be an atom (a 0-
argument call), a compound term, or a variable name. A rule is terminated by a '.'
followed by a white space character.

The functor of the head of a clause is the predicate that the clause describes. All the
clauses describing a given predicate comprise its definition. The arity of a clause is the
number of arguments in its head.

Syntax 31

Programming Guide

Examples

foo. % a fact

foo(1) :-
bar. % a rule

likes(Anyone, prolog) :- % a rule
logic_programmer(Anyone).

likes(Anyone, Anything). % a fact

my_append([], X, X). % a fact

my_append([A|B], C, [A|D]) :- % a rule
my_append(B, C, D).

is_not_true(X) :-
X,
!,
fail.

is_not_true(X).

These clauses define the relations foo/0, foo/1, likes/2, my_append/3 and
is_not_true/1 respectively.

All clauses describing a predicate must be in a single source file unless the predicate is
declared as multifile (see multifile/1).

32 Syntax

Programming Guide

Grammar Rules

A Prolog program may contain one or more grammar rules. These grammar rules may
be used to define the syntax of a language and to define a parser for that language.

A grammar rule takes the form:

grammar_head --> grammar_body.

Where grammar_head is a non-terminal symbol optionally followed by a terminal
symbol. The body of the grammar rule is a sequence of terminals, non-terminals or
grammar conditions, each separated by commas or semi-colons. A grammar condition
is a sequence of Prolog call terms surrounded by curly brackets ('{' and '}').

For a detailed description of the Prolog grammar rules please see the chapter on
'Grammar Rules'.

Examples

sentence --> noun_ph, verb_ph.
verb_ph --> verb, noun_ph.
verb --> [likes] ; [hates].
noun_ph --> determiner, noun.
determiner --> [the].
noun --> [boy] ; [dog].

Commands

A command is a Prolog term of the form:

:- goal1, …, goalk. % k ≥ 1

where goali is a call term (i.e. goal). A command is executed automatically when it is
encountered during a consult or reconsult (see also initialization/1).

Example

:- write('hello world'),nl.

Syntax 33

Programming Guide

Meta-variables

A meta-variable is a variable which appears in place of a callable Prolog structure. Two
types of meta-variable are allowed in WIN-PROLOG: condition meta-variables and
predicate meta-variables.

Extended Meta-variable Facilities in WIN-PROLOGPROLOGPROLOGPROLOG

The meta-variable facilities of WIN-PROLOG extend the usual Edinburgh syntax in two
ways:

· condition meta-variables can be bound to atoms and compound terms.

· predicate meta-variables can be used (standard 'Edinburgh' syntax does not
allow this).

34 Syntax

Programming Guide

Condition Meta-variable

This is where a variable appears as a goal in the body of a rule. The head of a clause
may not be represented in this way. By the time the meta-variable is called it must
have been instantiated to one of the following:

· an atom (represents a call to a 0-argument relation).

· a compound term of the form:

relation(t
1
, t

2
, …, t

n
)

The effect of evaluating a condition meta-variable is the same as if the condition had
appeared in the source program instead of the meta-variable.

Examples

The following is the definition of the built-in predicate \+/1:

\+(X) :- X, !, fail.
\+(X).

You can query this predicate as follows:

\+(true).
no

\+(false)
yes

\+(compare(=, 2, 3)).
yes

Predicate Meta-variable

This is where a goal in the body of a rule is a compound term whose functor is a
variable. By the time the goal is evaluated, the meta-variable must have been bound to
an atom.

Examples

map(Pred, [], []).
map(Pred, [X|Y], [X1|Y1]) :-

Pred(X, X1),
map(Pred, Y, Y1).

In this example, it is assumed that the meta-variable 'Pred' will be bound to the name
of a binary relation. Given the following binary relations:

double(X, Y) :-
Y is X + X.

Syntax 35

Programming Guide

square(X, Y) :-
Y is X * X.

You can query map/3 as follows:

map(double, [1,2,3,4], X).
X = [2,4,6,8]

map(square, [1,2,3,4], X).
X = [1,4,9,16]

Note: In standard Edinburgh syntax, the call to �Pred(X,X1)� in the second clause for
�map/3� would have to be replaced with calls to =../2 and call/1 as follows:

map(Pred, [X|Y], [X1|Y1]) :-
Call =.. [Pred,X,X1],
call(Call)
map(Pred, Y, Y1).

WIN-PROLOG supports =../2 and call/1, but the previous method for meta-calling is
far more efficient.

36 Arithmetic

Programming Guide

Arithmetic

WIN-PROLOG supports mixed integer and double precision floating point arithmetic.
The LPA philosophy is that since integers and floating point numbers with no significant
decimal places are logically the same, there should be no distinction between these in
a high-level language like Prolog: effectively there should only be one numerical data
type. The only reason integers are supported by WIN-PROLOG is for efficiency.

In WIN-PROLOG the conversion between integers and floating point numbers is
transparent to user programs and occurs inside the arithmetic handler used by is/2 and
other predicates. Prior to a calculation, any integers are converted into floating point
numbers, and afterwards the result is converted to an integer if possible. One
exception is the addition (or subtraction) of two integers. Wherever possible this is
done using integer arithmetic for speed.

Integers in WIN-PROLOG are represented in 32-bit two's complement format with a
range of -2147483648 to 2147483647 (7FFFFFFFh). Floating point numbers are
represented using the IEEE double precision format. This gives a precision of about 15
significant digits, and a range of 2.2e-308 to 1.7e308.

Rounding errors will invariably occur during certain operations because many decimal
fractions have no direct binary representation. These errors are normally confined to
the 14th or 15th digit. No attempt is made to round results to fewer decimal places.
For example, if the result of a calculation is the value 1.9999999999997 this value
would not be converted to the integer 2; however there are functions to perform such
rounding explicitly.

Predicates Related to Arithmetic

</2 expression less than

=:=/2 expression equality

=</2 expression less than or equal

=\=/2 expression inequality

>/2 expression greater than

>=/2 expression greater than or equal

is/2 expression evaluator

seed/1 seed the random number generator

Arithmetic 37

Programming Guide

Arithmetic Expressions

Arithmetic is performed by a number of built-in predicates that take arithmetic
expressions as arguments. The most common way to perform arithmetic is using the
is/2 predicate.

An arithmetic expression can be one of the following:

· A number (integer or floating point).

· A list of the form [X] where X is a number. This allows single character strings to
appear in expressions (e.g. "a").

· A function. A function is represented by a compound term whose functor
denotes the type of function, and whose argument(s) is itself an expression.
Only certain pre-defined functions are allowed in an expression these are
described in Tables 2 - 7 below.

· A bracketed expression of the form (Expr), where Expr is itself an expression.

· A variable that must have been bound to one of the above by the time the
expression is evaluated. (If by the time the expression is evaluated it contains
an unbound variable, a "Control Error" will be generated.)

Examples

The following are all legal arithmetic expressions.

23
45 * 97 / 2
sin(45)
tan((3 + 4) * 5)
[90] + 3
"A"

38 Arithmetic

Programming Guide

Table 5 to Table 10 outline the arithmetic functions that can be used with the is/2
predicate.

Function Description
X + Y the sum of X and Y.
X - Y the difference of X and Y.
-X the negative of X.
X * Y the product of X and Y.
X / Y the quotient of X and Y.
X // Y the integer quotient of X and Y. The result is truncated to the

nearest integer between it and 0.
X mod Y the remainder after integer division of X by Y. The result is the

same sign as X.
X ^ Y X to the power of Y.
rand(X) computes a pseudo-random floating point number between zero

and X
sqrt(X) the square root of X.
Table 5 - basic arithmetic functions

The trigonometric functions (see Table 6) work in degrees. They take a single
argument X that can itself be an expression.

Function Description
sin(X) the sine of X degrees
cos(X) the cosine of X degrees.
tan(X) the tangent of X degrees.
asin(X) the arcsine of X in degrees.
acos(X) the arccosine of X in degrees.
atan(X) the arctangent of X in degrees.
Table 6 - trigonometric functions

The following functions provide WIN-PROLOG�s support for logarithms.

Function Description
aln(X) e to the power of X.
alog(X) 10 to the power of X.
ln(X) the natural logarithm of X.
log(X) the base 10 logarithm of X.
Table 7- logarithmic functions

Arithmetic 39

Programming Guide

The truncation functions (see Table 8) can be used for such things as rounding,
returning signs and determining minimum and maximum values.

Function Description
abs(X) the absolute value of X. e.g. abs(-3.5) returns 3.5.
fp(X) the fractional part of X. e.g. fp(-3.5) returns -0.5.
int(X) the first integer equal to or less than X. e.g. int(-3.5) returns -4.
ip(X) the integer equal part of X. e.g. ip(-3.5) returns -3.
max(X,Y) the maximum value of X and Y. e.g. max(-3.5,4). returns 4.
min(X,Y) the minimum value of X and Y. e.g. min(-3.5,4). returns -3.5.
sign(X) -1 if X is negative, 0 if X is 0, or 1 if X is positive. e.g. sign(-3.5)

returns -1.
Table 8- truncation functions

The following bitwise operators will only work on integer values and will generate an
error if any other type of input is given (including floating point numbers).

Function Description
X /\ Y the logical and of the integers X and Y.
X \/ Y the logical inclusive or of the integers X and Y.
X << Y the logical shift arithmetic left of the integer X by the number Y

bits (vacated bits are filled with zeros).
X >> Y the logical shift arithmetic right of the integer X by the number Y

bits (the most significant bit is propagated into the vacated bits).
\(X) the logical negation of the integer X.
a(X,Y) the logical �and� (AND) of the integers X and Y.
l(X,Y) the logical left rotation of the integer X by the number Y bits.
o(X,Y) the logical inclusive �or� (OR) of the integers X and Y.
r(X,Y) the logical right rotation of the integer X by the number Y bits.
x(X,Y) the logical exclusive �or�(XOR) of the integers X and Y.
Table 9 - is/2 integer bitwise arithmetic functions

Pseudo Random Number Generator

The pseudo random number generator (see Table 10) returns numbers that will be
useful in simulations and games. The pseudo random sequence has a cycle of 2^64
numbers. Each time Prolog is invoked, the seed used by the random number
generator is initialised from a combination of time and date. This ensures different
behaviour on different occasions.

40 Arithmetic

Programming Guide

Function Description
rand(X) a random floating point number between zero and X.
Table 10 - random number function

The seed can also be initialised using the seed/1 predicate. This allows the same
sequence of random integers to be generated on different occasions (useful for some
simulations, and for testing).

A few words of background should be said about "random" numbers and their use, as
they can be of critical importance to simulations and related applications. Firstly, it
should be noted that it is not possible to generate true random number sequences on
standard Windows-compatible computer hardware, since this hardware is entirely
deterministic. The best that can be achieved is to generate pseudo random numbers,
hence the term, "Pseudo Random Number Generator", or "Prang". Using a Prang would
have one major advantage over true random numbers, even if the latter were possible
on a computer, namely that a given "random" sequence can be repeated where
necessary to eliminate the effects of randomness from successive runs of a simulation.

The Linear Congruential Method

Many ways have been investigated of producing pseudo random number sequences
on determistic hardware, and most involve complex shifting and indexing on tables of
"seed" numbers. The careful choice of the initial seeds is essential to the good
"random" behaviour of the Prang. Many such methods lack theoretical tests to support
their claims to randomness, and so have been avoided in WIN-PROLOG.

One method which involves only one seed, and which is supported by considerable
amounts of theory, is the widely-used "linear congruential" generator. In such a prang,
each successive pseudo random number is obtained by multiplying its immediate
predecessor (the seed) by a carefully chosen multiplier, adding an equally chosen
increment, and then returning the result modulo a suitable large number. The quality of
such sequences is entirely dependent upon the correct choice of multiplier, increment
and modulus: the worst case can yield a linear sequence; the best can yield pseudo
random sequences of the highest quality.

The multiplier, increment and modulus used in WIN-PROLOG are chosen according to
the criteria described in Vol 2 of "The Art of Computer Programming", by D E Knuth,
and pass all known tests for randomness (including the "spectral" test) with flying
colours. The generator yields a very random-appearing cycle of 2^64 distinct 64-bit
numbers.

Seeding the Prang

When WIN-PROLOG starts up, one of its operations is to obtain the 64-bit value in a
pair of low level system timers, and to store the result in the Prang seed. This ensures
that WIN-PROLOG's Prang will yield a different sequence of pseudo random numbers
every time it is run. As was noted above, in simulations it is often desirable to re-run a
pseudo random sequence on different simulation models, to remove any bias that may

Arithmetic 41

Programming Guide

be due to the random numbers themselves, and for this purpose, WIN-PROLOG

includes a seed/1 predicate. This may be called with any 32-bit integer or 64-bit
floating point number as its argument: the number will define a point in the cycle of
2^64 random numbers from which to resume generation.

Randomising the Prang

If it is desired to "randomise" the number sequence, perhaps after an explicit seed has
been set, and a simulation performed, the simplest method (equivalent to that used
during the WIN-PROLOG startup sequence) is to invoke the time/2 predicate to return
a value from the system timer, and to pass the result directly into the seed/1
predicate, as the following program suggests:

randomise :-
time(1, X),
seed(X).

It is important to note that "randomising" during a pseudo random number sequence
can degrade the quality of the sequence. The obvious reason is that numbers may
become related to time (because the seed is generated from a clock). Less obvious
perhaps is that the Prang in WIN-PROLOG has been chosen because it passes all
theoretical tests with flying colours, and is fast, and has shown itself to work very well.
Randomising during a sequence violates the theory behind many of the tests, resulting
in a loss of confidence in the sequence's pseudo random properties. The randomise
program shown above should only be used to restart the Prang after an explicit seed
has been set for a previous run of a simulation.

42 Timing

Programming Guide

Timing

WIN-PROLOG has several predicates that relate to the system time and date and to
the timing of programs. For more details on these predicates please refer to the
'Technical Reference'.

Predicates Related to Timing

ms/2 call a goal and return its execution
duration

time/2 get elapsed running time or local
computer time

time/4 convert between day number and
date

time/5 convert between tick count and time

time/7 return the local machine date and
time

Getting the System Date

The time/2 predicate can be used to return the system date. As an example of its use,
the following program uses time/2 in conjunction with stamp/2 to set the timestamp of
the file, "foo":

?- time(1, T), stamp(foo, T). <enter>
T = (145822,36522000).

Timing Programs and Time Stamps

If you want to time some Prolog programs, to either benchmark the Prolog or to
generate some statistics on your own programs, WIN-PROLOG has two built-in
predicates that deal with high resolution timing.

ms/2 takes a Prolog goal as an argument, then runs it and finally returns the number of
milliseconds it took to run.

time/2 returns the current value of the internal hardware clock counter.

Configuration Options 43

Programming Guide

Configuration Options

There are a number of configuration options that govern the way that WIN-PROLOG

interacts with the user. The options include: the reporting of file errors, the type of
source-file style checking, setting the Prolog prompt, checking the values of WIN-
PROLOG command line switches, changing the default file extensions, changing the
debugger, affecting garbage collection. For more details on these predicates please
refer to the 'Technical Reference'.

Predicates Related to Configuration Options

fileerrors/0 turn on the reporting of file error
messages

no_style_check/1 turn off the specified style of
compile-time style checking

nofileerrors/0 turn off the reporting of file error
messages

prolog_flag/2 get or check the values for global
environment variables

prolog_flag/3 set and get values for global
environment variables

prompt/2 get or set the Prolog prompt

prompts/2 get or set the buffered console input
prompts

style_check/1 turn on the specified type of
compile-time style checking

switch/2 set or get the value of a WIN-
PROLOG command line switch

Turning Style Checking On and Off

When a source code file is loaded into WIN-PROLOG you have the option of using a
built-in style checker to check different aspects of your Prolog programming style. In
themselves the style warnings do not indicate errors but may point to potential bugs.
The predicates used to turn style checking on or off are: no_style_check/1 and
style_check/1. Style checking is described in more detail in the chapter on debugging.

44 Configuration Options

Programming Guide

Turning the Reporting of File Errors On and Off

When an attempt is made to read or write to a file and the file cannot be opened, the
usual behaviour is for a file handling error to be invoked and the goal that is running to
be aborted. This is not always convenient in a program, so the facility of turning the
reporting of file errors off is provided. In this case when an attempt is made to read or
write to a file and the file cannot be opened the goal that was running will simply fail.
The predicates that perform this function are fileerrors/0 and nofileerrors/0.

Changing or Getting the Prolog Read Prompt

The Prolog read prompt can be configured by the user using the goal prompt/2. The
read prompt indicates that the Prolog system is waiting for user input. When the
prompt is set it remains in force until control has been returned to the Prolog
command line. An example of using prompt/2 is when an information line is presented
to the user to indicate the type of input expected.

?- prompt(P, '==>'), read(T), prompt(_, P). <enter>
==>new(prompt). <enter>
P = '|: ' ,
T = new(prompt)

Retrieving or Setting a WIN-PROLOG Switch

WIN-PROLOG has 26 built-in switches which can be used as simple semi-permanent
integer storage spaces by the user. They are used initially to retrieve any command
line switches that have been set but from then on may be used freely. The predicate
used to set or retrieve the values is switch/2.

System flags

WIN-PROLOG makes use of some flags that denote the defaults for the system; you
can test these using a built-in predicate called:

prolog_flag(Flag, Value).

where Flag is the name of the flag to be checked and Value is the value of the flag. You
can change the flags with a built-in predicate called:

prolog_flag(Flag, Oldvalue, Newvalue).

where Flag is the name of the flag to be changed, Oldvalue returns the old value of the
flag and Newvalue is the value the flag is to be set to. Changing the Prolog flags effects
the way the WIN-PROLOG environment works. The following query will set the status
box to report on the compilation of files.

?- prolog_flag(status_box, Old, on).

Configuration Options 45

Programming Guide

so that whenever a file is optimized a status box will appear and display each predicate
as it is optimized.

The names of some useful flags and the values that they can take are shown in the
following tables:

Flag Default Value Other Values
text_extension '' any <atom>
source_extension '.PL' any <atom>
object_extension '.PC' any <atom>
project_extension '.PJ' any <atom>
flex_extension '.KSL' any <atom>
Table 11 - prolog flags for defining file extensions

The above flags define the default extensions for the various types of files used in WIN-
PROLOG. They can be changed using prolog_flag/3, for example, to change the
default extensions for WIN-PROLOG source files from '.PL' to '.PRO' you could use the
following goal:

?- prolog_flag(source_extension,_,'.PRO').

Then any source files that are loaded by WIN-PROLOG should have the default
extension '.PRO'.

Flag Default Value Other Values
debug_file srcbug <atom> in the domain {srcbug, boxbug,

mismatch, failure, monitor, <atom>}
Table 12 - prolog flag for setting the debugger

The type of debugger can be set by changing the 'debug_file' flag with prolog_flag/3 to
one of the provided files or a user-defined debugger. For example, the following query
will change the debugger from the default source-level debugger to the text based
four-port box model debugger.

?- prolog_flag(debug_file, _, boxbug).

Flag Default Value Other Values
max_depth 0 <integer> ≥ 0
Table 13 - prolog flag for write_term/2

The 'max_depth' flag sets the output depth in write_term/[2,3] a library predicate
provided for compatibility with Quintus Prolog. For a complete description of
write_term/[2,3] see your Quintus Prolog documentation.

46 Configuration Options

Programming Guide

Flag Default Value Other Values
unknown error <atom> in the range {error, fail}
Table 14 - prolog flag for setting the system unknown predicate handling

The 'unknown' flag defines the system action taken when an undefined predicate is
called. For example the following call will set the system to fail whenever an undefined
predicate is called:

?- prolog_flag(unknown,_,fail).

Control 47

Programming Guide

Control

WIN-PROLOG provides a number of predicates that allow extra control over the
execution of programs. Normally a Prolog program searches non-deterministically for a
solution, backtracking on failure and terminating when the first solution has been
found. The control predicates allow this behaviour to be modified to a greater or lesser
extent. For more details on these predicates please refer to the 'Technical Reference'.

Predicates Related to Control

!/0 control backtracking

,/2 conjunction

->/2 if then

;/2 disjunction

\+/1 negation as failure

abort/0 abort the current program

break/0 suspend the current execution

break_hook/1 built-in break hook

exit/1 exit directly to the operating system

fail/0 force failure

false/0 force failure

halt/0 terminate the current Prolog session

halt/1 terminate the current Prolog session
with a return code

not/1 logical negation

otherwise/0 succeed.

repeat/0 succeed even on backtracking.

repeat/1 succeed even on backtracking for a
given number of times

true/0 succeed

48 Control

Programming Guide

Controlling Backtracking

The cut predicate is included to prevent unwanted backtracking into previous calls in
the current clause, and to other clauses. Consider the following program:

a :- b, !, c. % clause 1
a :- d. % clause 2

When the cut in clause 1 is executed it will prevent backtracking into both goal �b� and
clause 2. This effect can be used to limit backtracking through a database. For instance
looking at the 'person' database from the negation example, you can limit backtracking
to stop at 'dave':

person(clive).
person(dave):- !.
person(diane).

So the program:

write_person :- person(X), write(X), nl, fail.

Will output:

clive
dave
no

Placing a cut at the end of a clause will have the effect of making the procedure
deterministic. For example:

a :- b, c.
b :- d, e, !.
b :- f.

Assuming the first clause for goal �b� is succesful, the cut at the end of the clause will
force �b� to be deterministic (even though there is a second clause for �b�)

The predicate one/1 can be used instead of a cut to make a procedure call
deterministic. For example:

a :- one(b), one(c), d.

The calls to �b� and �c� are deterministic in this clause.

Conjunction

The standard 'Edinburgh' way of signifying the conjunction (and) of goals is by using the
comma. For example:

a :- b, c.

Control 49

Programming Guide

Means that for �a� to succeed both �b� and �c� must succeed. Either subgoal may
itself be a conjunction or disjunction, or a simple goal.

Disjunction

The standard 'Edinburgh' way of signifying the disjunction (or) of goals is by using the
semi-colon. For example:

a :- b; c.

Means that for �a� to succeed either or both of �b� and �c� must succeed. Either
subgoal may itself be a conjunction or disjunction, or a simple goal.

If-Then

The standard 'Edinburgh' way of signifying implication (If-Then) is by using a
combination of a dash and a right arrow. For example:

a :- b -> c.
a :- d.

Means that if �b� succeeds then try �c�, if �c� then fails do not backtrack into �b�, but
go straight on to the next clause for �a�. In this way 'If-Then' can be thought of as a
local cut.

If-Then-Else

An implication (If-Then) can be combined with a disjunction (or) to form an If-Then-Else.
For example:

a :- (b -> c; d), e.

Means that if �b� succeeds then try �c� followed by �e�, else (if �b� fails) try �d�
followed by �e�.

Negation as Failure

Negation as failure, indicated using the '\+'/1 predicate, checks that a given goal does
not succeed; this predicate succeeds if the given goal fails and fails if the given goal
succeeds. For example:

a :- \+ b.

Means that �a� will succeed if �b� fails and vice-versa.

50 Control

Programming Guide

WIN-PROLOG also provides a 'logical' not/1 predicate which also succeeds if the given
goal fails. If any variables in the goal are instantiated as a result of running the goal,
then not/1 will generate an error. For example consider the database:

person(clive).
person(dave).
person(diane).

The query:

?- not person(clive).

fails because 'clive' is a person in our database. Whereas the query:

?- not person(xzzyblyk).

succeeds because 'xzzyblyk' is quite evidently not a person in our database. However,
the query:

?- not person(Anything).

will generate an error because 'Anything' is a variable that will be instantiated to the first
person found in the database. Whereas if \+/1 was used instead of not/1:

?- \+ person(Anything).

this query will simply fail.

Control 51

Programming Guide

Forcing Failure

Predicates can be forced to fail and cause backtracking (the finding of alternative
solutions) using the fail/0 or the false/0 predicates. These predicates are identical apart
from their names and they always fail when they are called. For example, using the
'person' database from the previous example:

person(clive).
person(dave).
person(diane).

you can write a program that will print out all the names in the database using
backtracking:

write_person :- person(X), write(X), nl, fail.

Then the query:

?- write_person.

will produce the following output:

clive
dave
diane
no

Success

The true/0 or the otherwise/0 predicates are identical apart from their names and they
always succeed when they are called. They effectively act as "No operations"
procedures.

Repeating Sequences of Clauses

You can repeat a sequence of clauses using the 'Edinburgh' repeat/0 predicate in
conjunction with fail/0. repeat/0 always succeeds even on backtracking so when a
failure occurs after a repeat the program cannot backtrack past the call to repeat.

Repeat-fail loops are standard practice in Prolog due to their efficiency; this is due to
the fact that any environment bindings are undone each time round the loop. For
example, consider the following program for reading terms in from a source file and
writing them to the screen.

listfile(File) :-
see(File),
repeat,
read_write.

52 Control

Programming Guide

read_write:-
eof,
!,
seen .

read_write:-
eread(Term,Vars),
ewrite(Term,Vars),
write('.'),
nl,
fail.

The variables Term and Vars are unbound each time round the loop and therefore do
not take up any space on the stack.

Unique to WIN-PROLOG is a parameterised version, repeat/1, so that you can repeat a
sequence of commands a specified number of times. For example if you wanted to
print the name 'Martha' ten times on different lines you could do this with the following
program:

write_martha_ten :-
repeat(10),
write('Martha'),
nl,
fail.

Aborting Programs

Sometimes you will need to terminate a program immediately and return control to the
Prolog environment. To do this you can use the abort/0 predicate. This predicate is
most useful in a user-defined error handler when an error has occurred that is serious
enough to merit termination of the evaluation.

Suspending Programs

To temporarily suspend a WIN-PROLOG program the break/0 predicate is provided.
Associated with the break/0 predicate is the notion of a 'break level' - each time the
predicate is called the 'break level' is incremented and each time a suspended
execution is resumed the 'break level' is decremented. To return from a break level to
a suspended execution, type an end of file character <ctrl-z> or the atom end_of_file
at the command line.

Terminating Prolog

WIN-PROLOG can be terminated programmatically using the commands halt/[0,1] or
exit/1. The parameterised halt/1 can be used to return an exit status value to the
underlying operating system.

Debugging 53

Programming Guide

Debugging

Debugging is a vital part of any programming language. WIN-PROLOG provides a
number of debuggers that enable you to investigate your programs in different ways. In
addition to the debuggers there are predicates that provide additional information that
may be useful for debugging purposes, these include: checking the style of your code
and timing predicates.

The main debugger in WIN-PROLOG works at the source-level; it allows you to guide
the control flow of your program and step through a representation of its source code
as it proceeds towards a solution. There are a number of predicates that allow you to
specify the interaction with the debugger. The source-level debugger is documented in
more detail elsewhere. For more details on these predicates please refer to the
'Technical Reference'.

Predicates Related to Debugging

debug/0 set the debug mode to on

�?DEBUG?�/1 user-defined Prolog program which
intercepts calls to the debugger

debug_hook/1 system handler for the debug hook

debugging/0 write the current status of the
debugger to the standard output
stream

force/1 call a Prolog goal and suspend the
debugger for that call

halt/1 terminate the current Prolog session
and return an error code

leash/2 set the interaction with the
debugger

leashed/2 test or get the leashes on the
debugging ports

ms/2 time a given Prolog goal

no_style_check/1 turn off the specified style of
compile-time style checking

nodebug/0 switch the debug mode to off

54 Debugging

Programming Guide

nospy/1 remove the spy points from the
specified predicates

nospyall/0 remove all spy points

notrace/0 turn the debug mode to off

spy/1 set a spy point on the specified
predicates

style_check/1 turn on the specified type of
compile-time style checking.

trace/0 switch the trace mode to on

Setting the Current Debugger

The current debugger is set by the value of the Prolog flag 'debug_file'. This can be
changed using the predicate prolog_flag/3

Tracing and Debugging Programs

The currently set debugger may be invoked in two different ways. The first method
using the predicate trace/0 will invoke the debugger at the top-level of the next goal
that is run. The second method uses the predicate debug/0 and will invoke the
debugger whenever a spypoint is encountered during the running of a program. The
trace and debug modes can be turned off using the predicates nodebug/0 and
notrace/0. The current debugging status may be retrieved using the predicate
debugging/0.

Setting Spypoints

Spypoints are set using the predicate spy/1 and may be removed using the predicates
nospy/1 and nospyall/0.

Setting and Checking the Interaction with the Debugger

The interaction with the debugger can be set using the predicate leash/1 and the
interaction for each port can be checked using the predicate leashed/1.

Program Style Checking

When a source code file is loaded into WIN-PROLOG you have the option of using a
built-in style checker to check different aspects of your Prolog programming style. The
style aspects that are checked are: the use of isolated variables, the discontiguous
definition of a predicate in a file and the re-definition of a predicate in subsequently
loaded files.

Debugging 55

Programming Guide

If you are told that a particular variable is only used once in a clause it may be the case
that the variable name has been misspelt and was intended to match with other
variables in the clause. In any case it is recommended that variables that are not
intended for re-use should be indicated by an underscore character to emphasize the
fact.

If you are told that a predicate is defined in the file in a discontiguous manner this may
point out that you are not taking the later clauses into account when considering the
effect on the program of backtracking. It is best to keep the definitions of predicates in
a contiguous block and not interspersed with clauses from another predicate.

If you are told that a predicate is defined in more than one file it may be that you are
unaware of the second definition which overwrites the first. If you want the definition for
a predicate to be contained in several files you should declare the predicate as multifile
using multifile/1.

In themselves, the style warnings do not indicate errors but may point to potential
bugs. The predicates used to turn style checking on or off are: no_style_check/1 and
style_check/1.

Timing Programs

You can time programs to estimate their efficiency using the predicate ms/2:

?- ms(member(X,[1,2,3]), T). <enter>
X = 1 ,
T = 0 ; <space>

X = 2 ,
T = 721 ; <space>

X = 3 ,
T = 1282 ; <space>

no

56 Definite Clause Grammar

Programming Guide

Definite Clause Grammar

WIN-PROLOG has some built-in facilities provided for implementing language parsers.
Here we describe the Definite Clause Grammar (DCG) notation which provides a
mechanism for defining the grammar rules of a language. These rules are automatically
translated to a Prolog program which defines a parser for the language being defined.
For a further detailed discussion of grammars and parsers, please see the chapter
'Using Grammar Rules' in the book 'Programming in Prolog' by W.F.Clocksin and
C.S.Mellish.

Predicates Related to Definite Clause Grammar

'C'/3 used in the expansion of grammar rules

expand_dcg/2 convert grammar rules to Prolog directly

expand_term/2 convert between a grammar rule and its Prolog
equivalent

phrase/2 checks if a sequence of symbols can be parsed as
a given type

phrase/3 checks if a sequence of symbols can be parsed as
a given type

term_expansion/2 user-defined hook for grammar rule translation

Definite Clause Grammar 57

Programming Guide

Grammars

A grammar of a language is a set of rules that describe what sequences of symbols or
words make up valid sentences of that language. A grammar can be used to describe
a natural language such as English, or to define a programming language.

For example, the following rules can be thought of as giving a grammar for very simple
English sentences.

· A sentence can be a noun phrase followed by a verb phrase.

· A noun phrase can be a determiner followed by a noun.

· A verb phrase can be just a verb.

· A verb phrase can also be a verb followed by a noun phrase.

· The word 'the' is a determiner.

· The words 'boy' and 'house' are nouns.

· The word 'likes' is a verb.

According to this grammar, the following sequences of words are valid sentences:

the boy likes the house.

the house likes the boy.

The following sequence of words are not valid sentences according to the above rules:

likes the boy.

boy likes boy.

58 Definite Clause Grammar

Programming Guide

Parsing and Parse Trees

Parsing is the analysis of a sequence of symbols to see if the sequence represents a
sentence according to a grammar.

A successful parse of a sequence of symbols will establish the structure of the
sentence in terms of the grammar. It will show the way that symbols link together into
phrases, the phrases form larger phrases, and ultimately how the phrases link together
to form a sentence.

A parse tree is a representation of the structure of a sentence. For example, the
following parse tree represents the structure of the sentence:

"the boy likes the house"

according to the informal grammar given in the previous section:

sentence(
 noun_phrase(
 determiner(the),
 noun(boy)
),
 verb_phrase(
 verb(likes),
 noun_phrase(
 determiner(the),
 noun(house)
)
)
)

Definite Clause Grammar 59

Programming Guide

Grammar Notations

There are many different notations for defining a set of grammar rules. One way is to
describe the rules informally in English as we did above. However such a description
can lead to ambiguities for more complex grammars. A more formal notation for
defining a grammar is the Backus-Naur Form (or BNF). BNF is frequently used to define
the grammar of programming languages. The following BNF grammar describes the
grammar of simple English sentences introduced above.

<sentence> ::= <noun phrase> <verb phrase>
<noun phrase> ::= <determiner> <noun>
<verb phrase> ::= <verb> | <verb> <noun phrase>
<determiner> ::= the
<noun> ::= boy | house
<verb> ::= likes

The vertical bar | denotes an alternative. For example, a noun can be either boy or
house.

Symbols that appear in sentences of the language are called terminal symbols. The
terminal symbols in the above grammar are:

the boy house likes

Symbols inside angle brackets (e.g. <sentence>) are non-terminal symbols. Non-
terminal symbols denote phrases that are constructed from a sequence of one or
more terminal symbols.

60 Definite Clause Grammar

Programming Guide

DCG Notation

The definite clause grammar (DCG) notation is another formalism for defining a
grammar. Using this notation a grammar is represented as a set of logical rules. The
syntax of these rules is merely a shorthand for ordinary Prolog syntax. When the DCG
rules are consulted (or optimized) they are translated into Prolog clauses. (Details of
the Prolog representation are described below in the section entitled "The Prolog
Representation of the Grammar Rules.")

A grammar specified using the DCG notation can be "executed" as a Prolog program in
order to see if a list of symbols represents a valid sentence of the language being
defined. Thus a DCG grammar specification not only defines a language; it also defines
a parser for the language. In addition, some DCG specifications may be used "in
reverse" to generate valid sentences according to the grammar.

Using the DCG notation, a grammar rule has the general form:

head --> body.

which can be read as "head takes the form body." For example, the grammar rule:

sentence --> noun_phrase, verb_phrase.

means "a sentence takes the form of a noun_phrase followed by a verb_phrase."

Using the DCG notation, a non-terminal symbol is represented by a Prolog atom or a
structure that is not a list. A terminal symbol is represented by any Prolog term. A
sequence of one or more terminal symbols must be written inside a Prolog list. An
empty sequence is denoted by the empty list []. If the terminal symbols are character
codes they can be written as a string (which is automatically converted to a list).

The left hand side of a grammar rule must be a non-terminal symbol. This non-terminal
may be followed by a sequence of terminal symbols (written inside a Prolog list). For
further details please see the section below entitled "Terminal Symbols on the Left
Hand Side of a Rule".

The right hand side of the rule may contain terminal and non-terminal symbols.

Items on the right hand side may be separated by the Prolog conjunction operator ','
which is read as "followed by."

Items may also be separated by the disjunctive operator ';' which is used to denote
alternatives. For example, the rule:

noun --> [boy] ; [house]

states that a noun is either �boy� or �house�. (Alternatives may also be defined by
giving alternative grammar rules for a non-terminal.)

The right hand side of a grammar rule may contain extra tests that are written as
Prolog procedure calls. These tests must be enclosed in curly brackets ('{' and '}'). The

Definite Clause Grammar 61

Programming Guide

cut symbol may appear on the right side of a rule. It does not need to be enclosed in
curly brackets.

For further details see the section below entitled "Adding Extra Tests to DCG Rules."

A Simple Example

This example is a DCG representation of the grammar of simple English sentences.

sentence --> noun_phrase, verb_phrase.
noun_phrase --> determiner, noun.
verb_phrase --> verb ; verb, noun_phrase.
determiner --> [the].
noun --> [boy] ; [house].
verb --> [likes].

You can use this grammar to parse sentences using the built-in predicates phrase/2
and phrase/3.

?- phrase(sentence,[the,boy,likes,the,house]).
yes

?- phrase(sentence,[the,boy,likes]).
yes

?- phrase(sentence,[the,girl,likes,the,house]).
no % fails because 'girl' is not a known noun

?- phrase(sentence,[the,boy,likes], Rest).
Rest = []

Note that phrase/2 and phrase/3 may also be used to analyse sub-phrases.

?- phrase(verb_phrase,[likes]).
yes

?- phrase(verb_phrase,[likes,the,boy]).
yes

?- phrase(verb_phrase,[the,boy]).
no % fails because 'the boy' is a noun phrase

?- phrase(noun_phrase,[the,boy,likes,the,house],Rest).
Rest = [likes,the,house]

62 Definite Clause Grammar

Programming Guide

This grammar may also be used to generate sentences and phrases (because the right
hand sides of the grammar rules do not contain procedure calls).

?- phrase(sentence, S).
S = [the,boy,likes]
S = [the,boy,likes,the,boy]
S = [the,boy,likes,the,house]
S = [the,house,likes]
S = [the,house,likes,the,boy]
S = [the,house,likes,the,house]

?- phrase(verb_phrase, V).
V = [likes]
V = [likes,the,boy]
V = [likes,the,house]

Definite Clause Grammar 63

Programming Guide

Adding Extra Arguments to DCG Rules

The DCG notation has a useful extension which allows non-terminals to have
arguments. A non-terminal can have 1 or more arguments.

The first use of this extension is to specify a relationship between the sub-phrases of a
sentence. For instance, you could add an extra argument to specify that there must be
number agreement between two sub-phrases of a sentence. The following sentences
are incorrect because there is no number agreement between the noun phrase and
the verb phrase.

the boys likes the house
the boy like the house

In the first example the noun phrase is plural while the verb phrase is singular, whereas
in the second sentence the noun phrase is singular and the verb phrase is plural. The
following DCG specification uses a single extra argument which specifies whether each
non-terminal (i.e. each phrase type) is singular or plural.

sentence(N) --> noun_phrase(N), verb_phrase(N).
noun_phrase(N) --> determiner(N), noun(N).
verb_phrase(N) --> verb(N) ; verb(N), noun_phrase(N).
determiner(_) --> [the].
noun(singular) --> [boy] ; [house].
noun(plural) --> [boys] ; [houses].
verb(singular) --> [likes].
verb(plural) --> [like].

We could "execute" this grammar with the following queries.

?- phrase(sentence(X), [the,boy,likes,the,houses]).
X = singular

?- phrase(sentence(X), [the,boys,like,the,houses]).
X = plural

?- phrase(sentence(plural), [the,boys,like,the,house]).
yes

%
% the following query will fail because the noun
% phrase does not agree with the verb phrase
%
?- phrase(sentence(X), [the,boy,like,the,house]).
no

?- phrase(sentence(plural), [the,boy,likes,the,house]).
no % the sentence is not plural

64 Definite Clause Grammar

Programming Guide

The second use of the extra argument facility is to add some semantic information to
the grammar specification. For example, the following rule is part of the definition of
the syntax of an arithmetic expression. The extra argument X denotes the value
represented by an expression.

expression(X) --> term(Y), "+", expression(Z),
 {X is Y + Z}.

(For the complete definition of the syntax of expressions see the example below under
"A More Complex Example.")

The third reason for adding extra arguments is to return a parse tree that shows how a
sentence was parsed. To generate this structure we must add a single extra argument
to each non-terminal symbol. This extra argument will be the parse tree for that non-
terminal.

The following grammar of simple English sentences will produce a parse tree to show
how a sentence has been parsed.

sentence(sentence(N,V)) --> noun_phrase(N), verb_phrase(V).
noun_phrase(noun_phrase(D,N)) --> determiner(D), noun(N).
verb_phrase(verb_phrase(V,N)) --> verb(V), noun_phrase(N).
determiner(determiner(the)) --> [the].
noun(noun(boy)) --> [boy].
noun(noun(house)) --> [house].
verb(verb(likes)) --> [likes].

The query:

phrase(sentence(X), [the,boy,likes,the,house]).

will bind X to the following parse tree.

sentence(
 noun_phrase(
 determiner(the),
 noun(boy)
),
 verb_phrase(
 verb(likes),
 noun_phrase(
 determiner(the),
 noun(house)
)
)
)

Definite Clause Grammar 65

Programming Guide

Adding Extra Tests to DCG Rules

As mentioned above, the right hand side of a grammar rule can contain calls to Prolog
procedures. The calls must be enclosed in curly brackets ('{' and '}') to distinguish
them from terminal and non-terminal symbols in the rule.

One reason why it is useful to add procedure calls to the body of a rule is to allow extra
processing of terminal symbols. For example, consider specifying the syntax of a
numeric digit. We could specify a digit as follows:

digit --> "0".
digit --> "1".
digit --> "2".
digit --> "3".
digit --> "4".
digit --> "5".
digit --> "6".
digit --> "7".
digit --> "8".
digit --> "9".

A more economical definition of a digit would use calls to Prolog procedures:

digit --> [N], {N >= "0", N =< "9"}.

If the body of a grammar rule contains a call to an output predicate, the output will take
place when that rule is selected and parsing reaches that part of the rule.

For example, the grammar rule:

sentence -->
noun_phrase,
{(write('noun phrase ok'),nl)},
verb_phrase.

will cause the message:

noun phrase ok

to be printed after the noun phrase has been successfully parsed, but before the verb
phrase is parsed.

Calls to cut (!) can appear in the body of a grammar rule, but they must not be
enclosed in curly brackets. The use of a cut in a grammar rule commits the parser to
using that rule. If the parse of a phrase fails using that rule, it will not attempt to use an
alternative rule to parse the phrase.

66 Definite Clause Grammar

Programming Guide

A More Complex Example

The following grammar illustrates the use of an extra argument in non-terminal
symbols. It also illustrates the use of procedure calls in the body of grammar rules. The
grammar defines simple arithmetic expressions that are made up of digits and
operators.

exp(Z) --> term(X), "+", exp(Y), {Z is X + Y}.
exp(Z) --> term(X), "-", exp(Y), {Z is X - Y}.
exp(Z) --> term(Z).
term(Z) --> mynumb(X), "*", term(Y), { Z is X * Y}.
term(Z) --> mynumb(X), "/", term(Y), { Z is X / Y}.
term(Z) --> mynumb(Z).
mynumb(C) --> "+", mynumb(C).
mynumb(C) --> "-", mynumb(X), {C is -X}.
mynumb(X) --> [C], { "0" =< C, C =< "9", X is C - "0"}.

The grammar can be used to parse and evaluate expressions:

phrase(exp(N), "1+2*5-3").
N = 8

phrase(exp(N), "-1+2*3", Rest).
N = 5
Rest = [] ;

N = 1
Rest = "*3" ;

N = -1
Rest = "+2*3" ;

no

This grammar cannot be used to generate expressions from known values.

Definite Clause Grammar 67

Programming Guide

The Prolog Representation of the Grammar Rules

In this section we describe the way in which a grammar rule is translated into an
ordinary Prolog clause. (Note that when you consult a DCG specification and then list it,
you will see the Prolog clause, not the original grammar rule.)

Each grammar rule is translated into a single Prolog clause that takes an input list and
returns an output list. Each clause will parse the input list to see if the initial portion of
that list represents a particular type of sub-phrase. If the parse is successful, the clause
returns an output list that is the remaining portion (possibly enlarged) still to be
analysed. The arguments that represent the input and output lists are not written in the
original grammar rule, but are added when the rule is translated. For example, the
grammar rule:

verb_phrase --> verb.

will be automatically translated into an ordinary Prolog clause of the form:

verb_phrase(In, Out) :- verb(In, Out).

If this clause is invoked to parse the input list:

[likes,the,boy]

then the output list will be bound to:

[the,boy]

An input and output argument will be added to each non-terminal on the right hand
side of the rule.

For example the grammar rule:

sentence --> noun_phrase, verb_phrase.

will be translated into the Prolog clause:

sentence(S, S0) :-
verb_phrase(S, S1),
noun_phrase(S1, S0).

The logical reading of this rule is:

the difference between S and its tail end sub-list S0 is a sentence if the
difference between S and its tail end sub-list S1 is a verb phrase and the
difference between S1 and its tail end sub-list S0 is a noun phrase.

Terminal symbols in the grammar rule are translated into calls of the form:

'C'(S1,X,S2).

68 Definite Clause Grammar

Programming Guide

where S1 is the input list whose head is the terminal X. S2 is the remaining portion of
the list still to be analysed by the parser.

The definition of 'C'/3 is:

'C'([X|S],X,S).

For example, the grammar rule:

determiner --> [the].

will be translated into:

determiner(S0, S1) :-
'C'(S0, the, S1).

Procedure calls in the body of a grammar rule are translated literally. For example, the
rule:

exp(X) --> term(Y), "+", exp(Z), {X is Y + Z}.

is translated into:

exp(X, S0, S1) :-
term(Y, S0, S2),
'C'(S2, 43, S3),% 43 is the character code for '+'
exp(Z, S3, S1),
X is Y + Z.

Notice that the input and output lists inserted by the grammar rule translator are placed
after any arguments given in the original grammar rules.

In summary, we have seen that the grammar rule translator uses a pair of lists to
represent a single phrase. The phrase is defined to be the difference between the input
list and the output list. For example, the following phrase (of type "determiner"):

[the]

would be represented by the list pair:

input list = [the,boy,likes]
output list = [boy,likes]

This list pair is known as a difference list.

Definite Clause Grammar 69

Programming Guide

Terminal Symbols on the Left-Hand Side of a Rule

The left hand side of a grammar rule may contain terminal symbols. These terminal
symbols must appear after the non-terminal symbol, and they must be written as a
Prolog list. For example, the following rule is valid:

non_terminal, [t1, t2] --> [t3].

Terminal symbols on the left hand side of a rule are inserted into the input sequence
being parsed, replacing the corresponding terminal symbols that appear on the right
hand side of the rule. For example, if the above rule is used to parse the input
sequence:

[t3,t4,t5]

then the output sequence generated by this rule will be:

[t1,t2,t4,t5]

This facility allows a given input sequence to be modified by the parser so that it
conforms to a standard form that can then be parsed by other grammar rules.

For example, we might want to analyse the command:

eat your cabbage

in the same way as we would analyse the standard form of such a command :

you eat your cabbage

By placing non-terminals on the left hand side, we can translate the first version of the
command to the second, more correct version:

sentence --> imperative, verb_phrase, noun_phrase.
imperative, [you] --> [].
imperative --> [].
verb_phrase --> pronoun, verb.
noun_phrase --> poss_pronoun, noun.
pronoun --> [you].
verb --> [eat].
poss_pronoun --> [your].
noun --> [cabbage].

The imperative non-terminal will be translated to the following Prolog clauses:

imperative(_A, _B) :-
'C'(_B, you, _A).

imperative(_B, _A).

70 Dictionaries

Programming Guide

Dictionaries

WIN-PROLOG has three built-in dictionaries that tell you the currently defined atoms,
the currently open files and the currently defined predicates. For more details on these
predicates please refer to the 'Technical Reference'.

Predicates Related to Dictionaries

dict/2 return a dictionary of atoms

fdict/2 return a dictionary of files

pdict/4 return a list of predicates matching
the given type and mask

wdict/2 return the currently open windows

wfdict/2 return the open fonts

wmdict/2 return the defined menus

The Atom Dictionary

The atoms that are currently defined can be found in the atom dictionary. This
dictionary can be found using the predicate dict/2.

The File Dictionary

To help with the maintenance of currently open files WIN-PROLOG has a built-in file
dictionary. The file dictionary can be accessed directly,using the predicate fdict/2, so as
to allow you to control the maintenance of files in your own manner.

We recommend that you do not mix indiscriminately between logical file handling
predicates and lower-level ones. For example, the predicates fcreate/5 and fclose/1
operate directly on the file dictionary, so whichever filename you use with these
predicates is either added or removed from the file list. The predicates open/[2,3] and
close/1 make use of the logical file names, so some processing is done to the
filename to convert it into its absolute form before adding it to the file dictionary. Let�s
assume you are in the WIN-PROLOG directory, it would not be a good idea to make
both of the following calls to open/2 and fcreate/5:

?- open('examples\meals.pl', read).

?- fcreate(meals, 'examples\meals.pl', 0, 0, 0).

Dictionaries 71

Programming Guide

If you did make these calls and then examined the file dictionary with the following call
to fdict/2:

?- fdict(0, Dict).
Dict = ['C:\Program Files\WIN-PROLOG 4100\EXAMPLES\MEALS.PL',meals]

you will see two different results of trying to open this file. This duplicate access of the
same file can lead to unpredictable behaviour.

The Predicate Dictionary

The predicates currently loaded into the system can be obtained from the predicate
dictionary. They are split into two major categories: system-defined predicates and
user-defined predicates, these categories are then sub-divided into four groups:
compiled, optimized, assembler and external predicates. Compiled predicates have
been loaded into the system from source code. Optimized predicates have been
loaded from object code files. Assembler predicates are defined in a dynamically
linkable assembler code module.

Currently defined predicates and their types can be found using pdict/4.

72 DOS Handling

Programming Guide

DOS Handling

To enable you to run external programs or initiate a DOS shell, WIN-PROLOG provides
several predicates for interfacing with DOS. You can also retrieve values from the WIN-
PROLOG command line switches and return information on the current version. For
more details on these predicates please refer to the 'Technical Reference'.

Predicates Related to DOS Handling

dos/0 initiate a DOS shell

dos/1 initiate a DOS shell and run the
given command

exec/3 execute an external program

switch/2 set or get the value of a WIN-
PROLOG command line switch

ver/4 return information on the current
version of WIN-PROLOG

Running a DOS shell

You can initiate a DOS shell from within WIN-PROLOG using either of the predicates
dos/[0,1]. dos/0 will simply initiate a shell, while dos/1 will initiate a shell with the given
command. For example: the following command will initiate a DOS shell and run the
DOS command DATE (to allow you to either see or set the system date):

?- dos(date).

To escape from the DOS shell back into WIN-PROLOG type EXIT at the DOS command
line.

Running a Command

You can also run a DOS command from within WIN-PROLOG without having to initiate
a DOS shell by using the predicate exec/3.

The exec/3 predicate behaves differently in the two systems: DOS-PROLOG and WIN-
PROLOG. In DOS-PROLOG when the exec/3 goal is run, control is given exclusively
to the DOS command specified in the call to exec/3, any further activity pending in
DOS-PROLOG is suspended until the command relinquishes control. In WIN-

DOS Handling 73

Programming Guide

PROLOG, because Windows is a multi-tasking environment, when the exec/3 goal is
run control is returned to WIN-PROLOG immediately. For example, consider the
following goal:

?- exec('pro386.exe','',X), beep(100,100).

Under DOS, the above goal will run a new incarnation of DOS-PROLOG (assuming
enough space is available) and only after this application has been quit will the original
DOS-PROLOG go on to the beep/2 call.

?- exec('C:\Program Files\WIN-PROLOG 4100\pro386w.exe','',X), beep(100,100).

Under Windows, the above goal will run a new incarnation of WIN-PROLOG and then
immediately go on to the beep/2 call.

Retrieving Command-Line Switches

WIN-PROLOG has 26 built-in named storage locations, their values can be retrieved
using the predicate switch/2. Initially they are used to store any switches that were
specified on the command line when WIN-PROLOG was invoked. Once WIN-PROLOG

has been loaded the storage locations may be used freely.

Getting Information about WIN-PROLOGPROLOGPROLOGPROLOG

Information on the currently running WIN-PROLOG system can be found using ver/4.
The information returned includes: the system name, the version number, the date of
creation and the serial number.

74 Error Handling

Programming Guide

Error Handling

There are a number of predicates in WIN-PROLOG that are associated with error
handling. These allow you to abort an evaluation, flush the current input stream, define
your own error handler, define the handling of unknown predicates and return an error
message for a given number. For more details on these predicates please refer to the
'Technical Reference'.

Predicates Related to Error Handling

'?BREAK?'/1 user-defined hook to gain control
after a break interrupt

'?ERROR?'/2 user-defined error handler

abort/0 abort the current program

break/0 suspend the current execution and
start supervisor

break_hook/1 default break hook in development
environment

catch/2 catch the error code generated by a
given goal

catch/3 same as catch/2 but also return the
predicate that generated the error

error_hook/2 system defined behaviour for error
handling

error_message/2 return an error message for an error
number

flush/0 flush the current input stream

throw/2 throw a numbered error

unknown_predicate_handler/2 user-defined fact that defines the
handling of unknown predicates

Defining Your Own Error Handler

You can create your own error handler by making a definition for '?ERROR?'/2 this can
be used in conjunction with the abort/0 and flush/0 predicates below to ensure the
smooth handling of errors.

Error Handling 75

Programming Guide

Aborting the Current Evaluation

In an error handler, when a serious error occurs, it is usually necessary to terminate
the evaluation that was taking place. The predicate abort/0 can be used in this way.

Flushing the Input Buffer

If an error occurs while reading from an input buffer it is usually a good idea to flush the
input, prior to continuing, to remove any characters remaining in the buffer. The
predicate flush/0 is provided for this purpose.

Defining an Unknown Predicate Handler

If the current evaluation contains a call to an undefined predicate, WIN-PROLOG will,
by default, raise an error. This behaviour can be modified to failure whenever an
unknown predicate is called, by changing the value of the 'unknown' flag from 'error' to
'fail' using prolog_flag/3. In addition you can create a definition for
unknown_predicate_handler/2 which allows you to specify a goal to be run whenever
an unknown predicate is called.

For example, to report every unknown predicate called and cause failure, define the
following:

?- assert(unknown_predicate_handler(U,unknown(U))).

where the definition of unknown/1 is:

unknown(Unknown) :-
write('predicate not currently defined: '),
write(Unknown),
fail .

Getting the Error Messages and Their Numbers

When an error occurs it is reported as a number and either '?ERROR?'/2, if such a
definition exists, or the default error handler is called. The error number reported can
be converted into a meaningful message using error_message/2. The default error
handler, error_handler/2, performs this translation to provide you with a meaningful
error message as well as dealing with specific types of error.

76 Error Handling

Programming Guide

Catching and Throwing Errors

The predicates catch/2 and throw/2 are useful when handling errors within Prolog
programs. They can work in a nested fashion where each call to throw/2 sends an error
number back to the last catch/2 that was put on the call stack. If there is no catch/2
remaining on the call stack then the error sent by throw/2 is generated as an actual
error.

The arguments of catch/2 are as follows:

catch(-Number,+Goal)

where Number is a number returned as a result of running the Goal. The value of
Number can be either 0 if the goal succeeds, -1 if the goal fails or an error number
sent by a call to throw/2 executed within the goal.

The predicate throw/2 has the following arguments

throw(+Number,+Goal)

where Number is the error number returned. For example:

throw(123,foo(A,B,C)).

generates error number 123 in the goal �foo(A,B,C)�.

Error Handling - An Example

An example of a useful error handler could be one that reports all errors with a simple
message to the console, before aborting execution. The following definition for
'?ERROR?'/2 will do just this:

'?ERROR?'(Number, Goal) :-
errmsg(Number, Message),
output(0),
writeq(error(Number) – Message – Goal),
nl,
abort.

After compiling this program, the error handler can be tested:

?- foo. <enter>
error(20) - 'Predicate Not Defined' – foo

Aborted

Files and Directories 77

Programming Guide

Files and Directories

It is likely, in an application, that you will need to access both files and directories. WIN-
PROLOG has a number of built-in predicates allowing easy manipulation of the
underlying file-directory structure. There are two levels of file handling predicates,
some higher-level logical filename predicates and some faster low-level predicates. For
more details on these predicates please refer to the 'Technical Reference'.

Predicates Related to Files and Directories

absolute_file_name/2 converts from a relative to an
absolute file specification

absolute_file_name/3 convert between a relative and an
absolute file specification using
options

attrib/2 set or get file attributes

chdir/1 choose or return a directory

close/1 close the named file

del/1 delete a file

dir/3 get a file directory

env/1 get all environment strings

fclose/1 close a file

fcreate/5 create or open a disk or memory file
with the given access mode and
character encoding

fdata/5 retrieve information about an open
disk or memory file

fdict/2 return a dictionary of files

file/3 return selected information about
the named file

file_search_path/2 user-defined fact specifying a path
name

fname/4 convert a file name into parts

78 Files and Directories

Programming Guide

library_directory/1 defines a library directory

mkdir/1 make a directory

open/2 open a file with the given access
mode

open/3 open a file with the given access
mode and character encoding

ren/2 rename a file

rmdir/1 delete a directory

stamp/1 get or set a file date and time stamp

Low-Level Vs Logical Filenames

In WIN-PROLOG there are two levels of file handling predicates. The 'logical' filename
predicates and the low-level machine code predicates that are used to implement
them. The main difference between these two sets of predicates is that the logical
filename predicates automatically convert all file names into their absolute path name,
whereas the low-level predicates can also use relative path names.

Incompatibilities can occur when trying to use a low-level file handling predicate to refer
to a file that has been opened by a logical filename predicate (or vice-versa). For
example, if you assume that you are in the WIN-PROLOG home directory: you could
load a file using the following logical filename predicate open/2:

?- open('eg\meals.pl',read).

if you then tried to close this file using the low-level file handling predicate fclose/1:

?- fclose('eg\meals.pl').

even though the same file name was used in both cases this call would fail. A quick
look at the file dictionary will tell us why:

?- fdict(0, Files).
Files = ['C:\PRO386\EG\MEALS.PL']

the names simply do not match at the system level. If however we run the following
goal:

?- absolute_file_name('eg\meals.pl',Abs), fclose(Abs).
Abs = 'C:\PRO386\EG\MEALS.PL'

the file is successfully closed, because, the file name is converted into its absolute
equivalent. For this reason it is recommended that the two sets of predicates are used
independently of one another. Using the logical filename predicates when you wish to

Files and Directories 79

Programming Guide

make use of logical file names and using the low-level predicates when efficiency is a
more important consideration.

Logical File Handling

The File Search Path Mechanism

To aid the accessing of files within programs, WIN-PROLOG provides a flexible
mechanism for the easy maintenance of directory structures. The paths for directories
can be abstracted to logical names which can then be used within programs. In this
way an application can be moved to a different directory hierarchy or to a completely
new file system, with a minimum of effort. This mechanism is similar to the file search
path mechanism found in Quintus Prolog. An alias for a directory structure can be
defined by asserting a fact of the form:

file_search_path(Alias, DirSpec).

Getting Absolute Filenames

Absolute filenames can be obtained from relative or logical filenames using the
predicates absolute_file_name/[2,3]. For example, if you wanted to find the absolute
path name of a file in the EXAMPLES sub-directory of WIN-PROLOG you could ask
either of the following two queries:

?- absolute_file_name(examples(meals),Path).
Path = 'C:\PRO386\EXAMPLES\MEALS.PL'

?- absolute_file_name(prolog('examples\meals'),Path).
Path = 'C:\PRO386\EXAMPLES\MEALS.PL'

Note that in the absence of an extension a '.PL' extension is assumed.

Opening Files

The predicate open/2 can be used to open a named file with the given attributes; the
predicate open/3 can be used to open a named file with the given attributes and
character encoding. These predicates can make use of the logical filenames, so care
must be taken if you plan to maintain the file dictionary directly. Otherwise, use close/1
to close any files opened with open/[2,3].

Closing Files

Files may be closed using the predicate close/1. This predicate can make use of logical
filenames and should be used in conjunction with open/[2,3].

Low-level File Handling

If you want faster file access, there are a number of low-level file handling predicates.
These predicates cannot make use of the logical file names and are documented in the
'Technical Reference'.

80 Garbage Collection and Memory

Programming Guide

Garbage Collection and Memory

WIN-PROLOG has a number of built-in predicates for determining and maximising the
amount of memory available to WIN-PROLOG in its six memory areas. For more
details on these predicates please refer to the 'Technical Reference'.

Predicates Related to Garbage Collection and Memory

free/9 return the free space available in
WIN-PROLOG's memory areas

total/9 return the total space allocated to
WIN-PROLOG's memory areas

garbage_collect/0 invoke the garbage collector
explicitly

garbage_collect/1 invoke the garbage collector
explicitly for given memory area

gc/0 enable the garbage collector

gc/1 perform an explicit garbage
collection

nogc/0 disable the garbage collector

statistics/0 display statistics about the current
status of the system

statistics/2 get individual memory statistics

stats/4 get timer and garbage collection
statistics

ver/1 output the standard banner

ver/4 output the standard banner

Determining Free Memory

The amount of free memory in WIN-PROLOG can be found using the predicate free/9
where each of the variables refers to a memory area. The memory areas are the
backtrack stack, the local stack, the reset stack, the term heap, the text heap, the
program heap, the system stack, the string input buffer and the string output buffer.

Garbage Collection and Memory 81

Programming Guide

As an example, this predicate can be used to determine whether a goal is
deterministic or not:

backtrackpoints(Goal) :-
free(OldBacktrack,_,_,_,_,_,_,_,_),
Goal,
free(NewBacktrack,_,_,_,_,_,_,_,_),
(OldBacktrack =:= NewBacktrack
->

write('No backtrack points'),
nl

;
write('Backtrack point found'),
nl) .

The �backtrackpoints/1� program works by comparing the size of the backtrack stack
before and after the goal has been called and then comparing the two values, if the
values are different then there are backtrack points, otherwise, if the values are
identical, the program is deterministic.

?- backtrackpoints(member(X,[a,b,c])). <enter>
Backtrack point found
X = a ; <space>

Backtrack point found
X = b ; <space>

Backtrack point found
X = c ; <space>

no

Garbage Collection

The program and the text heaps can be garbage collected to maximise the amount of
contiguous memory available. Normally this process is completely automatic but may
be explicitly called using the predicates garbage_collect/0, which collects both memory
areas, and garbage_collect/1, which collects either the term or the text heap. Explicit
garbage collection can be turned on or off using the predicates gc/0 and nogc/0 (note:
these predicates do not effect automatic garbage collection).

Getting Program Space Statistics

The status of the WIN-PROLOG memory areas can be printed to the current output
stream using statistics/0 the individual statistics referenced by name can be returned
using statistics/2. For example, to see the current backtrack stack value you could use
the following call to statistics/2.

?- statistics(backtrack_stack,BS).
BS = 65356

82 Garbage Collection and Memory

Programming Guide

Getting Version statistics

The standard banner, including memory statistics, can be printed to the current output
stream using ver/1. Individual aspects of the version information, including the system
name, the version number, the date of creation and the serial number can be obtained
with ver/4.

Input and Output 83

Programming Guide

Input and Output

Input and output in WIN-PROLOG makes use of standard 'Edinburgh' predicates as well
as some faster low-level predicates. The topics covered in this chapter are: term I/O,
setting I/O streams, temporarily redirecting I/O, file pointer positioning, formatted I/O,
character I/O, outputting format characters and copying data from file to file. For more
details on these predicates please refer to the 'Technical Reference'.

Predicates Related to Input and Output

Predicates for Setting I/O Streams

input/1 set input from a file, device or string

output/1 set output to a file, device or string

see/1 set the current input stream

seeing/1 return the current input stream

seen/0 reset the current input stream to the
standard input stream

tell/1 set the current output stream

telling/1 return the current output stream

told/0 reset the current output stream to
the standard output stream

Predicates for Temporarily Redirecting I/O

<~/2 re-direct input to a file or a string

~>/2 re-direct output to a file or a string

Predicates for Positioning File Pointers

at_end_of_file/0 checks to see if the input file pointer
is at end of file

at_end_of_line/0 test whether end of line has been
reached for the current input
stream.

eof/0 test to see if the input stream is at
end of file

84 Input and Output

Programming Guide

find/3 find or copy up to a string in the
current input stream

flush/0 flush the current input stream

inpos/1 set the input stream position

outpos/1 sets the output stream position

skip/1 skip to just after the specified
character code value on the current
input stream

skip_layout/0 skip past the white space characters
on the current input stream

skip_line/0 skip the remaining input characters
of the current line

skip_term/0 skip the remaining input characters
up to the end of a term

stream_position/2 get the current position of the
specified stream

stream_position/3 get the current position of the
specified stream

Formatted I/O Predicates

fread/4 formatted read of a term

fwrite/4 formatted write of a term

Character I/O Predicates

display/1 write a term to the standard output
stream in standard prefix notation

elex/1 set, reset or get the edinburgh flag

eprint/1 print a quoted edinburgh term to the
current output stream

eprint/2 same as eprint/1 but with the ability
to output variable names

eprint/3 same as eprint/2 but with added
priority

Input and Output 85

Programming Guide

eread/1 read an edinburgh term from the
current input stream

eread/2 same as eread/1 but with an added
variable list

etoks/1 read an edinbugh token list from the
current input stream

etoks/2 read an edinbugh token list from the
current input stream with variable
names

ewrite/1 write an unquoted edinburgh term
to the current output stream

ewrite/2 same as ewrite/1 but with the ability
to output variable names

ewrite/3 same as ewrite/2 but with added
priority

get/1 read a non-white-space character
from the current input stream

get0/1 read a character from the current
input stream

getb/1 get a byte (8-bit character code)
direct from keyboard

getx/2 input a byte, word or dword

op/3 declare an operator with a given
precedence and type

portray_clause/1 write a clause to the current output
stream in listing format

print/1 print a term to the current output
stream

printq/1 print a quoted term to the current
output stream

prompt/2 get or set the Prolog prompt

put/1 write a character to the current
output stream

putb/1 character output direct to screen

86 Input and Output

Programming Guide

putx/2 output a byte, word or dword to the
current output stream

read/1 read a term from the current input
stream

sysops/0 re-install all of the system-declared
operators

skip_term/0 skip the remaining input characters
up to the end of a term

vars/2 return a named list of vars in a term

write/1 write a term to the current output
stream

write_canonical/1 write a term to the current output
stream in canonical form

writeq/1 write a quoted term to the current
output stream

Predicates for Outputting Format Characters

nl/0 start a new line on the current
output stream

tab/1 write the given number of spaces to
the current output stream

Predicate for Copying Data From File To File

copy/2 copy data from the current input
stream to the current output stream

find/3 find or copy up to a string in the
current input stream

Keyboard and Screen I/O

keys/1 get the system key status

grab/1 check for a byte (8-bit character
code) direct from keyboard

ttyflush/0 flush the user output stream

Input and Output 87

Programming Guide

ttyget/1 read a non-white-space character
from the user input stream

ttyget0/1 read a character from the user input
stream

ttynl/0 start a new line on the user output
stream

ttyput/1 write a character to the user output
stream

ttyskip/1 skip to just after the specified
character code value on the user
input stream

ttytab/1 write the given number of spaces to
the user output stream

Sound Output

beep/2 sound a beep of the given duration
and frequency

Standard and Current I/O Streams

All input (whether term, character or formatted) is read from an input stream. An input
stream can be the user's terminal or a file. The standard input stream is the user's
terminal (i.e. the keyboard buffer) and is called �user�.

Similarly all output is written to an output stream. An output stream can be the user's
terminal or a file. The standard output stream is the user's terminal (or screen) and is
also called �user�.

At any given time there is a current input stream and a current output stream. Initially
these streams refer to the standard input stream and the standard output stream
respectively. However, they can be changed using the see/1 and tell/1 predicates.

Predicates such as read/1 and write/1 make use of the current input and output
streams. Predicates such as ttyget/1 and ttyput/1 make use of the standard input and
output streams.

Setting I/O Streams

WIN-PROLOG allows you to control the current I/O streams using the standard
edinburgh predicates: see/1, seeing/1, seen/0, tell/1, telling/1 and told/0. A program
that uses see/1, tell/1, seen/0 and told/0 to copy all the Prolog terms in one file to
another could be:

88 Input and Output

Programming Guide

prolog_copy(File1,File2) :-
 see(File1), %open the input file
 tell(File2), %open the output file
 repeat, %start a repeat loop
 read(Term), %read a term
 (Term \= end_of_file %if the term not end_of_file
 -> writeq(Term), %then output the term
 write('. '), %output a term terminator
 nl, %output a new line
 fail %fail back to the repeat
 ; seen, %else close the input
 told) . %and close the output

A useful feature of I/O programming in Prolog is that the I/O streams are set
independently from the predicates that actually perform the I/O. This means that the
logic of an I/O program can be debugged and tested on the default streams (keyboard
and screen) and then when everything works successfully the intended I/O streams
can be used. Our prolog_copy/2 program could be re-written without using calls to the
stream setting predicates as follows:

prolog_copy :-
 repeat, %start a repeat loop
 read(Term), %read a term
 (Term \= end_of_file %if the term not end_of_file
 -> writeq(Term), %then output the term
 write('. '), %output a term terminator
 nl, %output a new line
 fail %fail back to the repeat
 ; true) . %else suceed don’t repeat

This program could then be tested on the command line using the default keyboard
and screen I/O streams. This is demonstrated in the following example where the user
input is shown in bold text. The prolog_copy/0 predicate will loop continually, asking for
input, until the end of file marker is reached. In LPA-PROLOG the end of file marker
may be either the '~Z' character or the term end_of_file.

| ?- prolog_copy.
|: foo.
foo.
|: foo(A).
foo(_0005035E).
|: foo(B) :- bar(B).
foo(_0003C052) :- bar(_0003C052).
|: end_of_file.
yes

Having been tested, the prolog_copy/0 predicate could then be tried in earnest on two
files. The following example makes a copy of the Prolog file 'SOURCE.PL' into the file
'COPY.PL':

Input and Output 89

Programming Guide

?- see('source.pl'),tell('copy.pl'), prolog_copy, seen, told.

In addition to the Edinburgh predicates there are two lower-level stream I/O predicates:
input/1 and output/1. When performing file I/O there is no real advantage to using
these predicates. They do have a special function with regard to strings and this is
covered in the section titled "Random Access String I/O" below.

Temporarily Redirecting I/O

The current I/O streams can be redirected for the duration of a Prolog call using the
predicates ~>/2 and <~/2. This can be extremely useful in WIN-PROLOG for
Windows where I/O to windows or DLLs must be done using the string data type. As an
example of this type of use, consider the following:

?- wtcreate(fred,`Fred`,10,10,200,400),
write('The normal output'),
write('The redirected output') ~> S,
wtext((fred,1),S),
nl .

This program, when run on WIN-PROLOG, will do the following: create a window called
'fred', write the text 'The normal output' to the current output stream, redirect the text
'The redirected output' into a string represented by S, output the string S to the window
called 'fred' and finally write a new-line to the current output stream.

Both the input and output streams can be re-directed at the same time. We can use
our re-written prolog_copy/0 predicate, defined above, to copy from a file into a string
using the following query:

?- (prolog_copy ~> Copy) <~ 'source.pl'.

This re-directs the input of the prolog_copy/0 to be the file 'source.pl' and the output to
the string returned in the variable Copy.

Positioning File Pointers

The predicates available for file pointer positioning allow you to test the position of the
file pointer, find text, skip text and position the pointer explicitly.

Testing Input Boundary Conditions

An important factor in the successful handling of the input data is the ability to detect
boundary conditions. The input end of line and end of file boundaries can be tested
using the predicates at_end_of_line/0 and at_end_of_file/0 respectively. The following
example takes each line from the current input stream and writes it to the current
output stream with a comment that gives the line's number. A test is made for the end
of file and end of line boundaries before each character is input.

90 Input and Output

Programming Guide

/* if at the end of file stop */
number_lines(LineNumber) :-
 at_end_of_file. %test for end of file

/* if at the end of line output the line count */
number_lines(LineNumber) :-
 at_end_of_line, %test for end of line
 write(' % Line number '), %write a comment
 write(LineNumber), %and the line number
 skip_line, %skip to the next line on input
 nl, %output a new line
 NewLineNumber is LineNumber + 1, %increment line count
 number_lines(NewLineNumber). %recurse with new line count

/* if not at end of file or line input and output a character */
number_lines(LineNumber) :-
 get0(X), %get a character
 put(X), %output a character
 number_lines(LineNumber). %recurse

This program can take either a file or string as input. The following query tests the
number_lines/1 program with a string:

?- number_lines(1) <~ `Line One~MLine Two~M`.
Line One % Line number 1
Line Two % Line number 2

yes

Finding Text in an Input Stream

Text can be found in the current input stream using the find/3 predicate. This predicate
is very versatile, effectively performing several functions. At its simplest, it can search
for a string in a file or another string, or strip unwanted white space prior to a token
on input. Thanks to its output modes, it can also be used to copy from current input to
current output up to a specified termination string. This is especially useful when
writing search/replace algorithms.

?- (find(`c`,3,Found) <~ `abCde`) ~> Before.
Found = `C` ,
Before = `ab`

The skip_layout/0 predicate can be useful when you want to read from the current input
stream, but skip past any white space characters (those with ASCII code values of less
than 33). Searching will stop either when a printable character is found, or when end-
of-file is reached: in either case, skip_layout/0 succeeds.

Two more skip predicates are available: skip/1 can be used to skip past the next
occurrence of a character with the specified character code and skip_line/0 which skips
to the beginning of the next line of input. We used the skip_line/0 predicate earlier on

Input and Output 91

Programming Guide

in our number_lines/1 example, defined in a previous section titled "Testing Input
Boundary Conditions", to ensure that the next character on input was at the start of the
new line.

Setting the Stream Pointer Positions

The file pointer position can be set or checked with the following predicates: inpos/1,
outpos/1, stream_position/2 and stream_position/3. The lower-level inpos/1 and
outpos/1 are particularly useful as they are able to work on strings as well as files. The
predicates, inpos/1 and outpos/1, should be used with care on Unicode files as they
refer to byte offsets not character offsets.

The following example uses the inpos/1 predicate to implement a peek character
program that gives a preview of the next character in the current input stream without
changing the input pointer position.

peek_char(Char) :-
 inpos(I), %get the current input position
 get0(Char), %get the character code of the next char
 inpos(I). %reset the previous input position

Formatted I/O

The formatted I/O predicates fread/4 and fwrite/4 are designed to provide an efficient
way of inputting or outputting particular datatypes. They can be used for: inputting
whole lines of text, outputting terms with a given field width, truncating terms and
changing numbers into different radices.

Character I/O

The character I/O predicates: get/1, get0/1, getb/1, grab/1, put/1 and putb/1 all
perform I/O with 8-bit character codes (byte values); get/1, get0/1, put/1 and putb/1
also perform with 32-bit character codes. The predicates getx/2 and putx/2 can be
used to input or output bytes, words and dwords.

Outputting Format Characters

New lines and tabs can be output to the current output stream using the predicates
nl/0 and tab/1 respectively.

Copying Data From File To File

The predicate copy/2 has been provided to allow the quick transfer of data from stream
to stream.

Keyboard Input

The status of the keyboard can be monitored using the predicates grab/1 and keys/1.

92 Input and Output

Programming Guide

Interpreting Control Keys

To find the status of the control keys (<shift>, <ctrl>, <alt>, <scroll lock>, <num
lock>, <caps lock> and <ins>) WIN-PROLOG provides the keys/1 predicate. This
returns an integer that represents a 16-bit binary number, where each bit that is set
represents the active status of one of the control keys.

Sound Output

The beep/2 predicate allows you to make a sound of a given frequency and duration.
This can be useful when giving warnings or for drawing attention to the screen. For
example the following program will beep if the �Score� is greater than 100:

test(Score):-
(Score > 100
-> beep(1000,1000)
; !,

fail
).

List Handling 93

Programming Guide

List Handling

WIN-PROLOG provides some standard predicates for manipulating lists. The functions
available are: appending, reversing, removing items, testing for membership and
measuring length. For more details on these predicates please refer to the technical
reference manual.

Predicates Related to List Handling

append/3 join or split lists

length/2 get the length of a Prolog list

mem/3 return the given member of a term

member/2 get or check a member of a list

member/3 get or check a member of a list and
its position in the list

remove/3 remove an element from a list

removeall/3 remove all occurrences of an item
from a list

reverse/2 check or get the reverse of a list

sort/2 sort a list into ascending order,
removing duplicate terms

sort/3 sort a list into ascending order using
given key path

94 Loading and Saving

Programming Guide

Loading and Saving

WIN-PROLOG has a number of built-in predicates available for loading and saving
Prolog programs. Programs can be saved in two formats: source and object format.
Object format files load much more quickly than source format files. For more details
on these predicates please refer to the 'Technical Reference'.

Predicates Related to Loading and Saving

abolish_files/1 abolish all predicates associated
with the given file

compile/1 load source files using the
optimising compiler

consult/1 load source files using the
incremental compiler

ensure_loaded/1 load the specified Prolog source or
object file(s) into memory, ensuring
the most recent versions of files are
loaded.

initialization/1 declare a goal to be run on loading a
file

load_files/1 load the most recent versions of
files

load_files/2 load files according to the specified
options

multifile/1 declare predicates as being defined
in more than one file

prolog_load_context/2 get or check information about the
current load context

reconsult/1 reload source files using the
incremental compiler

save_predicates/2 save the specified predicates to the
named object file

source_file/1 get or check the name of a currently
loaded program file

Loading and Saving 95

Programming Guide

source_file/2 get or check a currently loaded
predicate and program file

source_file/3 get or check a predicate, clause
count and program file

Loading Source-Code Files and Object-Code Files

Source files contain programs that are in a human readable form. They can be edited
using a text editor. A source file can be loaded using the ensure_loaded/1,
load_files/[1,2], compile/1 and reconsult/1 predicates. By default predicates loaded in
this way will be static.

Object files contain programs that cannot be read or edited using a text editor. They
can contain dynamic and/or optimised code. An object file is loaded using the
load_files/[1,2] or ensure_loaded/1 predicates.

Running Goals Upon Loading

The ':-' operator can be used to automatically run a goal during the consultation of a
source file. The goal is run as soon as the ':-' 'declaration' is encountered.

If you are intending to chain files together, using declarations that load other files, you
should use the predicate initialization/1 in the declaration. Initialization goals are run
after the loading of the file in which they are contained.

For example: to chain the files FRED.PL and WILMA.PL together you could include the
declaration:

:- initialization ensure_loaded(fred).

in WILMA.PL and the declaration:

:- initialization ensure_loaded(wilma).

in FRED.PL.

Note: declarations are not maintained in optimized object code files (though they are
maintained in non-optimized object code files) unless they contain the predicate
initialization/1. So, if you intend to optimise any source files that contain declarations
and you want those declarations to be present in the object code files, you should
ensure that all the declarations are of the form:

:- initialization Goal.

Where Goal is the goal to be run.

96 Loading and Saving

Programming Guide

Loading Predicates From a Source File as Dynamic

By default when a source file is loaded, using either consult/1, reconsult/1,
ensure_loaded/1 or load_files/1, the predicates loaded from the files are considered to
be static (this means they cannot be asserted to or retracted from). You can specify
within a file that a certain predicate is to be dynamic by having a dynamic/1 declaration
before the definition of the predicate. An easy way of loading an entire file as dynamic
code is to use the predicate load_files/2 with the all_dynamic(true) option set. For
example, to load the file FRED.PL as dynamic code you could use the following:

?- load_files(fred,[all_dynamic(true)]).

Predicates Defined In More Than One File

Predicates whose definitions are spread across more than one source file should have
the declaration multifile/1 preceeding the definition of the clauses in each file.

If you want to optimize a multifile predicate you should load all the source files in which
the predicate is defined and then use save_predicates/2 to save the predicate to a file
and then optimize that file.

Saving Files

To save individual predicates in object code format, you can use the save_predicates/2
predicate. For example, if you had the predicates: foo/0, foo/1 and foo/3 in the WIN-
PROLOG database you can save just foo/0 and foo/3 in the file 'MYPREDS.PC' in the
following way:

?- save_predicates([foo/0, foo/3], 'MYPREDS').

If you want to save the entire contents of the current dynamic workspace as source
code to a file, for example the file 'DYNSRCE.PL', you can do so by running the following
goal:

?- listing ~> 'DYNSRCE.PL'.

Maintaining Source Files

In WIN-PROLOG the association is maintained between the Prolog code and the
source files from which it originates. This allows you to have several files loaded and
maintain their source separately. The relationship between predicates and their files
can be found using source_file/[1,2,3]. These predicates return: the currently loaded
source files, the predicates associated with those files, the number of the clauses for
the predicates and the location of the predicates in the files.

Loading and Saving 97

Programming Guide

Abolishing Files

If a file has been consulted into WIN-PROLOG all the predicates associated with that
file can be abolished using abolish_files/1.

98 Looking at the Program State

Programming Guide

Looking at the Program State

To investigate the workspace, i.e. to see what predicates are currently defined, what
type of predicates they are, what files are open, what operators are defined, etc... WIN-
PROLOG provides a number of built-in predicates to provide this information. For
more details on these predicates please refer to the 'Technical Reference'.

Predicates Related to Looking at the Program State

current_atom/1 check or get a current atom

current_predicate/1 check or get a current predicate

current_predicate/2 check or get a current predicate

current_op/3 get the name, type and precedence
of a currently defined operator

def/3 test for a currently defined predicate
and return its type

defs/2 return all arities for predicate

pdict/2 return a dictionary of predicates

predicate_property/2 find the association between
predicates and properties

Predicates and Properties

current_predicate/1 returns the name and arity of a predicate. It can be used to
backtrack through the current workspace. For example, if you had defined the following
predicates:

foo(X,Y) :- foo(X), write(Y).

foo(X) :- foo, write(X).

foo :- write(hello).

If you run the goal:

?- current_predicate(Pred).

It would return the following values:

Looking at the Program State 99

Programming Guide

Pred = foo/0 ;
Pred = foo/1 ;
Pred = foo/2

current_predicate/2 returns the name of a predicate and the most general term
corresponding to that name. It can backtrack through the current workspace. For
example, using the workspace defined above, the following goal:

?- current_predicate(Name, Term).

would produce the following results:

Name = foo
Term = foo ;
Name = foo
Term = foo(_00001025) ;
Name = foo
Term = foo(_00001027, _00001029)

predicate_property/2 can be used to find out the types of a currently defined predicate.
For example, using the workspace defined above, the following call:

?- predicate_property(foo, Types).

will return:

Types = compiled

predicate_property/2 can also be used to bactrack and find all the predicates that are
built-in to WIN-PROLOG. This can be done with the following goal:

?- predicate_property(Pred,built_in).

Currently Defined Atoms

The predicate current_atom/1 can be used to backtrack and find all atoms currently
defined in WIN-PROLOG .

Currently Defined Operators

The predicate current_op/3 can be used to backtrack and find the precedence, type
and name of all the operators currently defined in WIN-PROLOG .

Getting the Type and Arity of a Predicate

The type and arity of a given predicate can be found using the predicate def/3

Getting the Arity of Currently Defined Predicates

The arity of a given predicate can be found using the predicate defs/2

100 Meta-Programming

Programming Guide

Meta-Programming

A meta-level program is one whose data is itself a program. It treats the program as a
data structure, processes this structure in some way and may output a transformed
version of the program. The program that acts as data is known as the object level
program. For more details on these predicates please refer to the 'Technical
Reference'.

Predicates Related to Meta-Programming

=../2 defines the relationship between a
structure/atom and a list

(_ -> _ ; _) "if:then:else"

arg/3 find the nth argument of a term

call/1 call a Prolog goal

call/2 call a Prolog goal and return the
termination port

force/1 call a goal for which a spypoint is
currently set

functor/3 the relationship between a term, its
functor name and its arity

one/1 one solution meta-call

The ability to write meta-level programs is one of the strengths of Prolog in general,
and WIN-PROLOG in particular. The following applications are examples of meta-level
programs:

· compilers

· interpreters

· tracer programs

· program transformation tools

· Prolog program editors

· expert systems whose knowledge bases are represented as Prolog programs

Meta-Programming 101

Programming Guide

Prolog is suitable for writing meta-level programs because it uses the same type of
data structure to represent both programs and data. For example the clause:

likes(Logician, Person) :- likes(Person, logic).

is just the compound term:

:-(likes(Logician, Person), likes(Person, logic))

Individual components of a clause are also represented by Prolog terms.

Given that Prolog programs can be treated as data, Prolog unification can be used to
analyse these programs. The programs can also be manipulated using WIN-PROLOG's
built-in predicates. In particular the meta-level predicates are specifically designed to
manipulate terms that represent components of Prolog clauses.

The arg/3 predicate is used to access specific arguments of a compound term. It can
be used to access arguments in the conclusion or body of a clause.

The functor/3 predicate can be used to access the functor and arity of a compound
term. It can also be used to construct compound terms with a given functor and arity.
It is a useful predicate for analysing the conclusions and conditions of a clause.

The =../2 predicate converts between compound terms and lists. It allows a
conclusion or condition to be converted to a list. This list can then be processed (e.g.
by removing or changing certain elements) and the resultant list converted to a new
conclusion or condition. For example, this predicate could be used to add extra
arguments to the conclusion and conditions of a clause.

Meta-Programming

The typical 'Edinburgh' syntax for meta-programming uses the call/1 predicate. For
example the \+/1 predicate would be defined in the following way:

\+(Goal) :- call(Goal), !, fail.
\+(Goal).

In WIN-PROLOG you could also define the \+/1 predicate as follows:

\+(Goal) :- Goal, !, fail.
\+(Goal).

102 Sets of Solutions

Programming Guide

Sets of Solutions

Sometimes it is useful when a goal has several solutions to collect all (or some) of
those solutions as a list; included in WIN-PROLOG are a number of predicates that do
just that. For more details on these predicates please refer to the 'Technical
Reference'.

Predicates Related to Sets of Solutions

^/2 existential quantifier

bagof/3 find all the instances of a term for
which a Prolog goal is true

findall/3 find all the instances of a term for
which a Prolog goal is true

forall/2 generate then test solutions for a
goal

setof/3 find the set of instances of a term
for which a Prolog goal is true

solution/2 return the nth soution to a specified
call

Sets and Bags

setof/3 can be used to find the set of solutions for some given term or terms in a goal.
The solutions to the goal will be sorted and duplicate elements removed.

bagof/3 can be used to find all solutions to a goal for specified bound variables in the
goal.

findall/3 can be used to find all solutions to a goal where all the variables in the goal are
bound variables.

Using these predicates to find all solutions to a goal is much more efficient than writing
a program which uses backtracking to get the alternative solutions and uses the
database (via assert/[1,2]) to hold the solutions as they are found.

String Handling 103

Programming Guide

String Handling

One of the more powerful features of WIN-PROLOG is a string data type, which exists
in addition to the traditional Prolog byte list string type (called char list in WIN-
PROLOG). Strings in WIN-PROLOG allow the compact storage of large quantities of
text, and also provide an interface to several special I/O functions. For more details on
the following predicates please refer to the 'Technical Reference'.

Predicates Related to String Handling

<~/2 re-direct input to a file or a string

~>/2 re-direct output to a file or a string

cat/3 atom and string concatenation

elex/1 set, reset or get the edinburgh
syntax flag

Atoms and Char lists

Before discussing strings in detail, a few words should be said concerning their
relationship to the traditional Prolog text data types, namely atoms and byte lists
(called char lists in WIN-PROLOG). Both these types are of course fully integrated into
WIN-PROLOG. Atoms are effectively symbols, or names, which are indivisible, and
which identify programs, files, windows, database items and so forth. Char lists are
simply linked lists in which each cell contains a 32-bit integer in the range 0h-
FFFFFFFFh, representing the character code for a character. In a 32-bit Prolog system,
this is rather expensive, with each character requiring 10 bytes of storage! Char lists
are generally used in programs which manipulate text on a character-by-character
level. In source code, atoms are represented using single quotes:

'This is an atom'

or, where all characters in the atom are of the same lexical type, without quotes of any
kind. Char lists are represented in source code using double quotes:

"This is a char list"

When printed out by a Prolog program, atoms are given single quotes if they contain
mixes of lexical types, or if they contain certain reserved characters; char lists are
printed as any other list, for example:

[84,104,105,115 ...]

104 String Handling

Programming Guide

Strings

In WIN-PROLOG, the string is a data type which falls somewhere between the atom
and the char list. It shares the atom's text storage compactness, but is more easily
manipulated. Unlike atoms, strings are not stored on the dictionary, and so may be
created faster. Furthermore, while atoms in WIN-PROLOG are limited in length to
1024 characters, strings may be up to 3 gigabytes in length. Strings are represented
in WIN-PROLOG using the backwards quote:

`This is a string`

For reasons of compatibility with existing Prolog programs, this extension to Prolog
syntax can be disabled temporarily (see below). When disabled, the string predicates
may still be used, but strings will not be recognised while reading terms from an input
stream.

Properties of the Text Data Types

The main properties of the three text data types are summarised in Table 15. As can
be seen, the WIN-PROLOG string data type provides Prolog with considerable power
and flexibility.

Property Atoms Strings Char lists

Max length 1024 bytes 3 gigabytes Limited by
Heap Size

Dictionary yes no no

Space per
character
(0h..FDh)

1.3-2 bytes 1.3-2 bytes 10 bytes

Space per
character
(FEh..FFFFh)

3.9-6 bytes 3.9-6 bytes 10 bytes

Space per
character
(10000h..
FFFFFFFFh)

6.5-10 bytes 6.5-10 bytes 10 bytes

Main uses Predicate,
file and other
names

I/O streams,
data transfer,
large scale
text
processing,
special
predicates

List
processing of
text

Table 15 - the properties of atoms, char lists and strings

String Handling 105

Programming Guide

The major advantages of strings over atoms is that their maximum length is
considerably greater, and their creation does not involve dictionary look-up. Compared
to char lists, strings are 5-7 times more compact, and do not use up valuable heap
space. Strings are also fundamental to a number of very powerful, special purpose
predicates, as will be discussed below. For more details on the above, please refer to
Appendix L of the 'Technical Reference'.

Atom, Char list and String Conversions

It is possible to convert any of the three text data types into any of the other types,
using the three predicates shown below:

atom_chars(A,C) % converts atoms <-> char lists

atom_string(A,S) % converts atoms <-> strings

string_chars(S,C) % converts strings <-> char lists

The only constraints are that when converting either of the other two types into atoms,
the maximum length of the char list or string must not exceed 1024 characters.

Strings and Window Handling

Irrespective of whether you are running WIN-PROLOG or DOS-PROLOG, one of the
important functions of strings is in relation to window input and output. The window
handling predicates are described in considerable detail in the 'Technical Reference',
but a few words deserve to be said in the present context.

Window Handling in WIN-PROLOG and DOS-PROLOG

You cannot read text out of windows directly, but thanks to the wedttxt/2 predicate you
can obtain the text as a string. This simple but powerful feature allows you to save
window contents, reformat them and show them in other windows at a later point. For
example the following:

?- wedtsel((fred,1),0,80),wedttext((fred,1),Text), assert(foo(Text)).

will return, in Text, a string consisting of 80 text characters from the top of the edit
window (fred,1), and will store it in an assertion for foo/1.

The equivalent in DOS-PROLOG would be:

?- wedtsel(fred,0,100),wedttext(fred,Text), assert(foo(Text)).

as edit windows in DOS-PROLOG are not named as a conjunction and exist as top-
level windows in their own right.

Later, you could display this information at the beginning of the edit window (fred,1),
with the call:

?- wedtsel((fred,1),0,0), foo(Text), wedttext((fred,1),Text).

106 String Handling

Programming Guide

Again, the equivalent in DOS-PROLOG would be:

?- wedtsel(fred,0,0), foo(Text), wedttext(fred,Text).

Strings are also used in WIN-PROLOG for transferring information to and from some of
the built-in dialogs and any DLLs that are present.

Strings and Input/Output

Perhaps the most powerful feature of strings is their ability to act as input and output
streams. This property allows you to perform complex text formatting, data type
conversions, and other manipulations. String I/O is handled through the I/O redirection
predicates ~>/2 and <~/2. Normally these are used to divert the input to or output
from a single call from or to a file (named by an atom or logical file name). To output to
a string, you simply give a variable in place of the output file name, for example:

?- write(hello(world,123)) ~> String .

will result in the variable being bound as follows:

String = `hello(world,123))`

To input from a string, you simply give a string in place of the input file name, for
example:

?- read(X) <~ `foo(Bar). `.

will result in the variable being bound as follows:

X = foo(_).

The sorts of things you can do are manifold, and (in the classic cliche), limited only by
your imagination. Here are just two more examples, the first of which copies an entire
file (less than 64Kb in size) into a string:

?- see(fred), copy(65535,_) ~> FileString, seen.

FileString = <all the contents of file fred>

The second example converts a number into a formatted atom:

?- fwrite(f,6,3,3.14159) ~> String, atom_string(Atom,String).
String = ` 3.142`
Atom = ' 3.142'

Term Comparison and Sorting 107

Programming Guide

Term Comparison and Sorting

In this chapter we look at the comparison and sorting of terms within WIN-PROLOG.
Unlike the arithmetic comparisons (e.g. </2, >=/2), the comparison and sort
predicates can handle all types of terms, not just numbers. For more details on these
predicates please refer to the 'Technical Reference'.

Predicates Related to Term Comparison and Sorting

Unify

=/2 unification between two terms

\=/2 tests for non-unification between
two terms

Comparison

==/2 check that two terms are identical

\==/2 check that two terms are not
identical

eqv/2 check two terms for equivalence

Ordering

@</2 test if one term is less than another

@=/2 test if one term is the same as
another

@=</2 test if one term is equal to or less
than another

@>/2 test if one term is greater than
another

@>=/2 test if one term is greater than or
equal to another

@\=/2 test if one term is not the same as
another

cmp/3 compare two terms

108 Term Comparison and Sorting

Programming Guide

compare/3 find the relationship between one
term and another

Length

len/2 return length of a term

Sorting

keysort/2 sort a list of key-value pairs into
ascending order

sort/2 sort a list into ascending order and
remove duplicates

sort/3 sort a list into ascending order using
a key, do not remove duplicates

Checking

occurs_chk/2 occurs check

subsumes_chk/2 check that one term subsumes
another

Sorting

The sorting algorithm used in WIN-PROLOG is a "list-merge" sort, based on the
algorithm of this name described by D E Knuth in volume 3 of his book, "The Art of
Computer Programming". The list-merge algorithm is ideally suited to implementation
in a Prolog system, since it represents data as linked lists. The advantages of the list-
merge sort compared with other algorithms are considerable. Firstly, the algorithm is
very fast. Secondly, the algorithm is of the order ln2(n). Thirdly, the list-merge sort is
unaffected by the original ordering of data: common algorithms like Quicksort work well
most of the time, but have worst cases in which they become very inefficient. The list
merge sort has no such cases.

Standard Ordering

The comparison used in sorting and elsewhere in WIN-PROLOG is able to handle all
types of Prolog term. A "standard ordering" is used to relate terms of different types,
and this ordering is as follows:

Term Comparison and Sorting 109

Programming Guide

variables are less than:
integers and floats which are less than:
atoms which are less than:
strings which are less than:
lists which are less than:
compound terms which are less than:
true conjunctions which are less than:
true disjunctions

Within any one simple type, comparisons are based as follows:

variables address
integers and floats numerical value
atoms character code value
strings character code value

In structured types, comparison is made on the recursively first element in the two
terms. If these elements are identical, then the second elements are compared, and
so on until a differing pair of terms is found, or one of the structures is found to be
shorter than the other. In the last case, the shorter structure is "less" than the longer
one.

Sorting on Keys

The sort/3 predicate in WIN-PROLOG allows sorting to be carried out not only on the
entire terms in a list, but also on specified subterms. A "path", or list of integers, is
given which uniquely identifies which subterm is to be used as the sort key. This is
explained in more detail in the documentation of the sort/3 predicate, but it is
illustrated in the following example:

Consider the following database for the �foo/2� relation.

foo(a,10).
foo(g,4).
foo(h,3).
foo(j,1).
foo(c,8).
foo(e,6).
foo(b,9).
foo(f,5).
foo(d,7).
foo(i,2).

Using findall/3 and sort/3 we can return the information contained in this database in
two sorted forms. The first will be sorted according to the first arguments of the �foo/2�
relation:

110 Term Comparison and Sorting

Programming Guide

?- findall((X-Y),foo(X,Y),L),sort(L,SL,[2]).
X = _ ,
Y = _ ,
L = [a - 10,g - 4,h - 3,j - 1,c - 8,e - 6,b - 9,f - 5,d - 7,i - 2] ,
SL = [a - 10,b - 9,c - 8,d - 7,e - 6,f - 5,g - 4,h - 3,i - 2,j - 1]

The second will be sorted according to the second arguments of the �foo/2� relation:

?- findall((X-Y),foo(X,Y),L),sort(L,SL,[3]).
X = _ ,
Y = _ ,
L = [a - 10,g - 4,h - 3,j - 1,c - 8,e - 6,b - 9,f - 5,d - 7,i - 2] ,
SL = [j - 1,i - 2,h - 3,g - 4,f - 5,e - 6,d - 7,c - 8,b - 9,a - 10]

Sorting and Duplicate Removal

One unfortunate feature of the Edinburgh Prolog standard is that the sort/2 predicate
removes duplicate entries from the sorted list. While this can be useful under certain
circumstances, more often it is a nuisance. Sorting can be used, for example, to build
a very efficient algorithm for counting word occurrences in text. By sorting a list of
words without duplicate removal, counting the occurrence of each word is done by
checking the length of each contiguous sequence in the sorted list. A similar operation
on an unsorted list involves searching the entire list for each word being counted.
Duplicate removal within the sorting predicates would prevent the use of this kind of
algorithm.

In order to conform with the Edinburgh Prolog standard, WIN-PROLOG implements the
sort/2 predicate correctly - in other words, so that it removes duplicate entries from
the list. However, to give greater flexibility in the use of sorting, the sort/3 predicate
(which is unique to WIN-PROLOG, and therefore not in the Edinburgh standard) does
not remove duplicates, for example:

?- sort([the,dog,and,the,cat],X).
X = [and,cat,dog,the]

but:

?- sort([the,dog,and,the,cat],X,[]).
X = [and,cat,dog,the,the]

In fact, sort/2 is implemented in terms of sort/3, roughly as follows:

sort(List,Nodups) :-
sort(List,Sorted),
remove_duplicates(Sorted,Nodups).

Removal of duplicates from a sorted list is, of course, efficient, but even so it adds a
small overhead to sorting. For applications where duplicates either do not occur in the
data, or do not need to be removed even if they do, use of sort/3 will give better
performance than sort/2, albeit at the cost of portability to other Prologs.

Term Comparison and Sorting 111

Programming Guide

Checking

Executing the following command will generate a 'Term too deep' error:

?- X = f(X). <enter>
Term too deep

The occurs_chk/2 predicate can be used to check whether a particular variable occurs
within a term:

?- occurs_chk(f(X), X). <enter>
X = _

112 Term Conversion

Programming Guide

Term Conversion

WIN-PROLOG has a number of built-in predicates for converting between terms.
These include converting between: atoms, strings, char lists, lists and terms,
structures and lists, numbers and char lists and from terms with uninstantiated
variables to terms with instantiated variables. For more details on these predicates
please refer to the 'Technical Reference'.

String type conversion is particularly useful in WIN-PROLOG for Windows because the
DLL interface relies on the specific use of strings for the data being transferred.

Predicates Related to Term Conversion

=../2 defines the relationship between a
structure/atom and a list

atom_chars/2 converts between an atom and a list
of characters

atom_string/2 convert from an atom to a WIN-
PROLOG string

copy_term/2 copy a term with new variables

lwrupr/2 convert between lower and upper
case

name/2 convert between an atom or
number and a char list

number_atom/2 convert between a number and an
atom

number_chars/2 convert between a number and a list
of characters

number_string/2 convert between a number and a
WIN-PROLOG string

numbervars/3 instantiate the variables in a given
term

string_chars/2 convert from a list of character
codes to a WIN-PROLOG string

Term Conversion 113

Programming Guide

Converting Between Atoms and Char lists

The predicate atom_chars/2 can be used to convert between atoms and a list of
character codes that represent the characters in the atom.

Converting Between Atoms and Strings

The predicate atom_string/2 can be used to convert between the atom and the string
data-type.

Converting Between Char lists and Strings

The predicate string_chars/2 can be used to convert between a list of character codes
and a string.

114 Term Input and Output

Programming Guide

Term Input and Output

WIN-PROLOG has all the standard 'Edinburgh' term input and output predicates, as
well as some fast built-in term I/O predicates for specific functions. For more details on
these predicates please refer to the 'Technical Reference'.

Predicates Related to Term Input and Output

current_op/3 get the name, type and precedence
of a currently defined operator

display/1 write a term to the standard output
stream in standard prefix notation

elex/1 set, reset or get the edinburgh flag

eprint/1 print a quoted edinburgh term to the
current output stream

eprint/2 same as eprint/1 but with the ability
to output variable names

eprint/3 same as eprint/2 but with added
priority

eread/1 read an edinburgh term from the
current input stream

eread/2 same as eread/1 but with an added
variable list

etoks/1 read an edinbugh token list from the
current input stream

etoks/2 read an edinbugh token list from the
current input stream with variable
names

ewrite/1 write an unquoted edinburgh term
to the current output stream

ewrite/2 same as ewrite/1 but with the ability
to output variable names

ewrite/3 same as ewrite/2 but with added
priority

Term Input and Output 115

Programming Guide

op/3 declare an operator with a given
precedence and type

portray_clause/1 write a clause to the current output
stream in listing format

print/1 print a term to the current output
stream

prompt/2 get or set the Prolog prompt

read/1 read a term from the current input
stream

sysops/0 re-install all of the system-declared
operators

skip_term/0 skip the remaining input characters
up to the end of a term

vars/2 return a named list of vars in a term

write/1 write a term to the current output
stream

write_canonical/1 write a term to the current output
stream in canonical form

writeq/1 write a quoted term to the current
output stream

Maintaining Variable Names During The I/O Of Terms

The predicates eread/2, eprint/[2,3] and ewrite/[2,3] all contain an argument that
returns or defines the relationship between the variables in a term and the name of the
variable when it is in printed form. For example, to read in a term and then write the
term to the screen keeping the variable names, you could run the following sequence
of goals:

?- eread(Term,Vars), ewrite(Term,Vars),nl.

If you then type in:

foo(A,B,C).

This will produce the following output:

foo(A,B,C)
Term = foo(_0004A426,_0004A430,_0004A43A) ,
Vars = [(A,_0004A426),(B,_0004A430),(C,_0004A43A)]

116 Term Input and Output

Programming Guide

Declaring Operators

Operators are declared using the built-in predicate op/3. The form of this predicate is:

op(+Precedence, +Type, +Name)

where Precedence is the operator's precedence (an integer in the range 1 to 1200),
Type defines the operator type and associativity (e.g. fx), and Name is the name of the
operator (or a list of operator names). If Precedence is 0 then the operator declaration
for Name is cancelled.

Examples

The following examples show how some of the built-in operators are defined.

op(200, xfy, ^).
op(500, fx, [+, -]).

It is possible to have more than one operator of the same name. For example, the
built-in operator '+' is declared as both a prefix and an infix operator.

The built-in predicate current_op/3 can be used to find out what operators are currently
defined. The format of this predicate is:

current_op(?Precedence, ?Type, ?Name)

This succeeds if there is an operator called Name of type Type and with a precedence
of Precedence. It can be used to backtrack through the list of currently defined
operators.

Examples

current_op(X, Y, Z).
current_op(500, X, Y).

Term Type Checking 117

Programming Guide

Term Type Checking

WIN-PROLOG has a number of predicates available for checking the types of terms.
For more details on these predicates please refer to the 'Technical Reference'.

Predicates Related to Term Type Checking

atom/1 test for an atom

atomic/1 test for an atom or a number

callable/1 check to see if a term is an atom or
a compound.

char/1 check for an integer representing a
character code

chars/1 check for a list of integers
representing character codes

compound/1 test for a compound term

float/1 test for a floating point number

ground/1 check for completely bound terms

integer/1 test for an integer

integer_bound/3 generate or test a number between
lower and upper bounds

list/1 test for a list

lst/1 test for a list

nonvar/1 test for a non-variable

number/1 test for a floating point number or
integer

simple/1 check for an atom, number or
variable

string/1 test for a string

type/2 return type of a term

118 Term Type Checking

Programming Guide

unifiable/2 check that two terms are potentially
unifiable

var/1 test for an uninstantiated variable

Type Checking Predicates

The type checking predicates of the form: Type(Term), test a single argument for its
Type: i.e. whether it is a variable, number, atom, string, list or compound term. There
are a number of additions in WIN-PROLOG to the standard 'Edinburgh' type checking
predicates, such as: string/1, chars/1 etc.

Testing For an Integer Between Bounds

You can test for an integer between specified upper and lower bounds using the
predicate integer_bound/3. If the argument to be tested is a variable this predicate will
generate successive integers between the two bounds.

Switching According to The Types Of Terms

The predicate type/2 will return the type of any given term. This can be used in
programs as an efficient way of testing term types and switching to code that is
appropriate to that type of term.

The Clause Database 119

Programming Guide

The Clause Database

WIN-PROLOG has some standard 'Edinburgh' syntax predicates available for modifying
the Prolog database at run time. For more details on these predicates please refer to
the 'Technical Reference'.

Predicates Related to The Clause Database

abolish/1 delete all the predicates specified by
the given argument

abolish/2 delete all clauses for the given
predicate and arity

abolish_files/1 abolish all predicates associated
with the given file

assert/1 add a clause at the end of the
clauses associated with its predicate
name

asserta/1 add a clause at the beginning of the
clauses associated with its predicate
name

assert/2 assert the clause at the given
position

assertz/1 add a clause at the end of the
clauses associated with its predicate
name

clause/2 get or check the body of a clause
given its head

clauses/2 return all clauses matching the
given head

clause/3 get or check the body and position
of a clause given its head

dynamic/1 define a predicate to be dynamic

dynamic_call/1 call a dynamic procedure safely

functor/3 the relationship between a term, its
functor name and its arity

120 The Clause Database

Programming Guide

listing/0 list all the dynamic clauses in the
workspace to the current output
stream

listing/1 list the specified dynamic predicates
to the current output stream

retract/1 delete a clause that matches the
given clause

retractall/1 delete all clauses that match the
given clause head

retract/2 retract a clause at a specified
position

volatile/1 declare that the clauses for a
predicate will not be saved in object
files

Compiled, Optimized, Static and Dynamic Predicates

A WIN-PROLOG predicate is either optimized or compiled. Optimized code is static, it
cannot be listed (this is useful for hiding the code for programs from end users) and
runs faster than compiled code. Compiled code may be either dynamic or static (it
cannot be a mixture of the two), it can be listed but runs slower than optimized code.

Static procedures can be changed only by completely redefining them using consult/1
or compile/1. The complete definition of a static predicate can be deleted using
abolish/1 or abolish/2.

Dynamic procedures can be modified by adding or deleting individual clauses using the
assert and retract procedures. At any time the source code definition of the predicate
can be retrieved using the clause/2 predicate.

If a procedure is defined by being consulted, it is static by default. If you need to be
able to add, delete, or inspect the individual clauses of such a procedure, you must
make the procedure dynamic.

There are two ways to make a procedure dynamic:

· If the procedure is to be optimized or consulted, then it must be declared to
be dynamic before it is defined.

· If the procedure is to be created by assertions only, then the first assert
operation on the procedure automatically makes it dynamic.

For example, if you do not have a predicate called �foo� with three arguments in your
database the goal:

?- foo(A,B,C).

The Clause Database 121

Programming Guide

will generate an error. If you then enter the following goals:

?- dynamic(foo/3), assert(foo(a,b,c)), listing(foo/3).

this will generate the following output:

foo(a,b,c).

If you then abolish foo/3:

?- abolish(foo/3).

then the goal:

?- foo(A,B,C).

will fail because the predicate �foo/3� no longer exists in the database, but does not
generate an error because �foo/3� is defined as dynamic.

The status of a predicate can be tested at any time using the built-in predicate
predicate_property/2.

122 Types of Compilation

Programming Guide

Types of Compilation

This appendix discusses the differences between the three types of compilation,
namely incremental, hashed and optimised compilation in WIN-PROLOG, and indicates
why and when each of these types of compilation should be used.

Incremental Compilation: Clause by Clause

The term "incremental compilation" is used to describe a process where each individual
program clause is compiled independently, without reference to other clauses. In WIN-
PROLOG, incremental compilation is performed by handwritten 80386 assembler
code, and is extremely fast. First argument indexing and unification instructions are
highly optimised, even in the incremental compiler, making it ideal for use in small to
medium sized data relations (collections of facts), whether or not these need to be
modified dynamically at run time.

Program relations (collections of rules, with or without recursion) are less efficiently
compiled, but still run considerably faster than would be possible using an interpreter.

A special feature of incrementally compiled programs is that they can be incrementally
decompiled, back into their original source form; this allows full support not only of
assert/1 (compilation), but also clause/2, retract/1, and so forth. Apart from this flexible
run-time support, incremental compilation also fully supports the WIN-PROLOG

debuggers.

Hashed Compilation: Instant Access

The term "hashed compilation" is a slight misnomer, as hashing is actually a reversible
post-process applied to incrementally compiled programs. Introduced in version 4.200
of WIN-PROLOG, this feature allows the creation of a highly optimised hash table for
any incrementally compiled predicate that has no variable or variable-headed structure
cases in its first argument. The benefit of hashing on small to medium sized relations is
relatively slight, but it really comes into its own on large relations containing thousands,
or even millions, of clauses.

When an incrementally compiled predicate is hashed, each of its unique first
arguments is counted and built into a table with a user-defined amount of headroom,
specified by a "fudge factor", or percentage excess. The greater the fudge factor, the
fewer the number of mishits are likely to occur during hashing, resulting in a play-off
between efficiency and memory requirements. A default setting of 100% gives
excellent performance in most circumstances. Because hashing is reversible, it is
possible to try different settings on any given relation quickly to find out an optimal
fudge factor. Although a hashed relation cannot be modified with assert/1 or retract/1,
it is still fully accessible through clause/2, and so forth; furthermore, because hashing
can be removed as easily as it has been added, a relation revert to its incrementally
compiled status for any such modifications, before (optionally) rehashing. Hashed

Types of Compilation 123

Programming Guide

compilation also fully supports the WIN-PROLOG debuggers.

Optimised Compilation: Relation by Relation

The term "optimised compilation" is used to describe a process where each entire
relation (collection of clauses for a given predicate and arity) is compiled into a single
piece of code. In WIN-PROLOG, optimised compilation performed by a program is
written in Prolog which, although somewhat slower at compiling than the incremental
compiler, carries out sophisticated analysis on data and control flow within the
program, eliminating redundant data transfers and optimising data traffic in general.
The optimising compiler can perform multiple argument indexing, and special high
speed jump instructions can convert tail recursion into a conventional program loop.
Data relations do not normally benefit from being optimised, unless multiple argument
indexing is used, but program relations are invariably faster and more space efficient.

Because the optimised compiler converts an entire program relation into a single,
monolithic piece of executable code, it is not able to support assert/1, clause/2,
retract/1, or the WIN-PROLOG debuggers. On the other hand, since optimised code
cannot be decompiled, it provides a level of security for program source code.

First Argument Indexing

The argument indexing used in WIN-PROLOG is fairly extensive, but there are some
minor differences between the incremental, hashed and optimised compilers in this
respect. Firstly, the incremental compiler handles a few more indexing cases than the
hashed compiler, which in turn handles a few more than the optimising compiler;
secondly, on the other hand, the optimising compiler can index on multiple arguments,
which the incremental and hashed ones cannot.

All three compilers index on the type of the first argument; further, if the argument is
an atom or an integer, they index on the value. When the first argument is any kind of
compound term (tuple, list, conjunction or disjunction), the incremental compiler
indexes on the type of its first element, and if this is an atom, on the value. The
optimising compiler only performs indexing on the value of an atom in the first element
of a compound term, and does not index on the other types when at the head of a
term. The following table summarises the indexing capabilities:

Indexing Type Inc Hsh Opt

argument type yes yes yes

argument atom value yes yes yes

argument integer value yes yes yes

tuple head type yes yes no

tuple head atom value yes yes yes

124 Types of Compilation

Programming Guide

list head type yes yes no

list head atom value yes yes yes

conjunction head type yes yes no

conjunction head atom value yes yes yes

disjunction head type yes yes no

disjunction head atom value yes yes yes

indexing on 1st argument yes yes yes

indexing on other arguments no no yes

The Comparison: Head to Head

The three compilers in WIN-PROLOG provide complementary, rather than competing
services; in an application, it will typically be desirable to use a mix of all types of
compiled code. A key consideration is that both incremental and optimising compilers
implement indexing through a form of case statement, where successive table entries
are checked sequentially, while the hashed compiler implements a true hash table that
can give direct access to the clause required. In small or medium relations, the
performance improvement is fairly small, and may be offset by other considerations
(such as the desire to modify the data relation dynamically, or to disguise the source
code by optimising it); in large data relations, the improvement offered by hashing can
be very dramatic. The following table summarises the main features and properties of
the three compilers:

Feature Inc Hsh Opt

suitable for small data relations yes no yes

suitable for medium data relations yes yes no

suitable for large data relations no yes no

suitable for fast program relations no no yes

supports assert/retract yes * no

supports clause/decompile/listing yes yes no

supports debuggers yes yes no

builtnoin to run time kernel yes yes no

provides source code security no no yes

* because it is possible to remove and reapply hashing at any time, a hashed relation
can be modified simply by converting it back into an incremental relation, performing

Types of Compilation 125

Programming Guide

the desired updates, and then rehashing it.

126 The Optimising Compiler

Programming Guide

The Optimising Compiler

The optimising compiler provided with WIN-PROLOG can be used to increase the
speed of incrementally optimized Prolog programs. It does this by creating switch
statements and index tables that index not only on the first argument but on multiple
arguments. Prolog code that has been optimised using the optimising compiler cannot
be listed, edited or otherwise viewed. For more details on these predicates please refer
to the 'Technical Reference'.

Programs can be optimised on a predicate basis, using the predicate optimize/1, or on
a file to file basis, using the predicate optimize_files/1.

Predicates Related to The Optimising Compiler

index/2 declare multiple argument indexes

optimize/1 optimize a static predicate

optimize_files/1 file to file optimization of code

First Argument Indexing

When a static Prolog procedure is called and the first argument of the call is
instantiated, the type of that argument is used to select the first clause to solve the
procedure call. A clause whose first argument is not of the same type as the first
argument of the procedure call will not be considered (unless it is a variable). In the
case of a procedure call whose first argument is an integer or atom, the value of the
argument is also used to select clauses. A clause whose first argument is a variable will
always be considered to solve a procedure call (regardless of the first argument in the
call).

For example, given the program:

interpret(1) :- process_1.
interpret(2) :- process_2.
interpret(3) :- process_3.

First argument indexing will give fast access to the different cases of the �interpret�
program. For example, when trying to solve the call:

interpret(2).

only the second clause will be selected.

First argument indexing is also used when trying to resolve a procedure call on
backtracking.

The Optimising Compiler 127

Programming Guide

The use of first argument indexing improves program efficiency in a number of ways:

Firstly, it reduces unnecessary growth of the backtrack stack. The backtrack stack will
only grow when there are alternative clauses whose first argument may match with the
first argument in a procedure call. For example consider the program:

test(a).
test(b).
test(c).

The call:

test(b).

will not generate any backtrack points as there is only one clause that can possibly
match the call.

Without first argument indexing, a Prolog engine would try to use the first clause to
solve the call. A backtrack frame would be generated which points at the second
clause for �test�. The selected clause would fail (because 'a' does not unify with 'b'),
causing the system to backtrack to the second clause for �test�. Before calling this
clause another backtrack point would be created, this one pointing at the third clause
for �test� (even though this clause will not match the procedure call).

The second advantage of WIN-PROLOG's indexing mechanism is that it may make a
procedure deterministic when called with an instantiated first argument. As we have
just seen, this means that the backtrack stack will not grow for deterministic uses of
the procedure. It also means that when the procedure exits, it may be possible to pop
the corresponding call frame from the call stack (provided any sub-goals were also
deterministic).

The third advantage of first argument indexing is that it may make a program tail
recursive. For example, the following definition of append is tail recursive, provided the
first argument is given when it is called:

append([], List, List).
append([Head|Tail], List1, [Head|List2]) :-

append(Tail, List1, List2).

First argument indexing means that when the recursive call in the first clause is
executed, the second clause will not be tried on backtracking.

The first argument indexing in the incremental compiler will partition variables, atoms,
integers, real numbers, empty lists, lists and compound terms. This means that the
atom �fred� will be differentiated from the atom �john�, the integer 15 will be
differentiated from the integer 59 and so on...

A compound term, �f(x)�, is also distinguished from other compound terms with
different names (�g(a)�, �h(a,b,c)� etc...).

Note: The string datatype is not partitioned, so the argument:

128 The Optimising Compiler

Programming Guide

`fred`

will not be differentiated from the string:

`john` .

The float datatype is also not partitioned, so the argument:

1.234

will not be differentiated from the float:

6.789 .

Multiple Argument Indexing in the Optimising Compiler

When using the optimising compiler you can specify the number of arguments that you
wish a particular predicate to be indexed on using the predicate index/2. For example,
given a customer database with three arguments 'Surname', 'Age' and 'Address':

customer(smith,35,'97 Bloggs Lane').
customer(smith,24,'52 Raindrop Crescent').
customer(smith,11,'2 Laneger Street').
customer(smith,89,'15 Twining Road').
customer(jones,102,'8a Guildhall Crescent').
customer(jones,43,'23 Light Avenue').
customer(jones,27,'894 Merton Road').
customer(jones,19,'The Mews Dripping Lane').

You could query this database in the following way:

?- customer(jones, Age, '894 Merton Road').

Because the incremental compiler has first argument indexing, WIN-PROLOG's
inference engine will go directly to the first �customer� clause whose first argument is
�jones� and then step through each consecutive clause until the third argument is
matched. At this point the Age variable will be instantiated to 27.

You could speed up this process by setting the optimising compiler to index this
database on both the surname and the address arguments using the following call.

?- index(customer/3, [1,3]).

Then if you optimise the database:

?- optimize(customer/3).

The query:

?- customer(jones, Age, '894 Merton Road').

The Optimising Compiler 129

Programming Guide

will be matched directly against the seventh clause in the �customer� database. In this
example the query, after the database has been optimised, will take approximately half
the time to find a solution as the same query asked before the database was optimised
and the benefits will be even greater on larger and more complex examples.

Checking the Index of a Predicate

The type of index set on a predicate is a property of that predicate and is found using
predicate_property/2. For example the following call will test the index set on the above
customer/3 predicate.

• ?- predicate_property(customer(_,_,_), index(Index)).
Index = [1,3]

130 Data Compression and Encryption

Programming Guide

Data Compression and Encryption

Two useful features of WIN-PROLOG are its LZSS data compression and
decompression routines and its MZSS data encryption and decryption routines. These
are available for general use in the stuff/3, fluff/3, encode/2 and decode/2 predicates.

Predicates related to data compression and encryption

stuff/3 compress the data in the current
input stream to the current output
stream

fluff/3 decompress the data in the current
input stream to the current output
stream

encode/2 encode a data stream using MZSS
encryption

decode/2 decode a data stream from input to
output using MZSS decryption

Abort LZSS Compression

As its name suggests, LZSS compression is based on Lempel-Ziv compression, and is
a modified version of the original LZ77 algorithm. In this algorithm, a sliding window is
maintained over recently output data, while a look-ahead buffer peeks into the stream
of data yet to be compressed. The contents of the look-ahead are compared with all
locations in the sliding window, and if a match of two or more characters is found, the
address and length of the match within the window, rather than the characters
themselves, is output. Depending upon the sizes of sliding window and look-ahead
buffer, compression ratios of up to 64:1 are theoretically possible for highly patterned
data; in practice, ratios of 2:1 to 4:1 are more usual.

The stuff/3 and fluff/3 Predicates

The predicates which implement LZSS compression and decompression are called
stuff/3 and fluff/3 respectively. Both of these work by taking their input from the current
input stream, and emitting their output to the current output stream. Their three
arguments specify the size of sliding window (look-ahead is computed from this), the
total number of raw (uncompressed) bytes processed, and the total number of
compressed bytes processed. By experimenting with the sliding window size and
comparing the last two values, it should be easy to determine the optimimum setting
for whichever type of data you want to compress.

Data Compression and Encryption 131

Programming Guide

About MZSS Encryption

As its name suggests, MZSS encryption makes use of a Marsaglia/Zaman pseudo
random number generator, which has the primary benefit of offering a very large key
size (1185 bits, compared with just 64 bits in WIN-PROLOG's existing linear-
congruential PRANG!). The MZ/PRANG is seeded by a user-specified password of up to
148 characters, and successive numbers are then combined (xor) with the plaintext in
order to encrypt it, or with the cyphertext in order to decrypt it. Several special
features of MZSS encryption make it especially secure.

The encode/2 and decode/2 Predicates

The predicates which implement MZSS encryption and decryption are called encode/2
and decode/2 respectively. Both of these work by taking their input from the current
input stream, and emitting their output to the current output stream. Their two
arguments specify the password key and the total number of raw (unencrypted) bytes
processed.

132 Built-in Dialogs

Programming Guide

Built-in Dialogs

WIN-PROLOG has a built-in dialog for displaying messages and getting a standard
response from the user. For more details on these predicates please refer to the
'Technical Reference'.

Programs can be optimised on a predicate basis, using the predicate optimize/1, or on
a file to file basis, using the predicate optimize_files/1.

Predicates Related to Dialogs

abtbox/3 display the standard about box
dialog

�?CHANGE?�/3 user-defined hook for handling
change box messages

change_hook/3 system handler for the change
dialog

chgbox/3 display the system change box
dialog

�?FIND?�/3 user-defined hook for handling find
box messages

find_hook/3 system hook for handling find box
messages

fndbox/2 display the system find box dialog

fntbox/3 invokes the font selection dialog

message_box/3 create a message box and return a
response

msgbox/4 create a message box and return a
response

opnbox/5 display the "open file" common
dialog box

prnbox/4 display the "print/print setup"
common dialog box

savbox/5 display the "save as" common dialog
box

Built-in Dialogs 133

Programming Guide

sttbox/2 create or close a status box and
return immediately

Message Box

The predicate message_box/3 can be used to create a dialog with some given text, a
given set of standard buttons and will return a standard response from the user. For
example, the following query will create a dialog with two buttons (�yes� and �no�) and
the text `Would you like some tea?`. When the user has responded to the question it
will return in its third argument the answer which will be one of the atoms �yes� or �no�.

?- message_box(yesno,`Would you like some tea?`,Ans).

This predicate is compatible between all three platforms.

134 Programmable Hooks and Handlers

Programming Guide

Programmable Hooks and Handlers

During the running of WIN-PROLOG there are a number of set entry points where
special user-defined programs can modify the normal behaviour of the system. These
programs are referred to as "programmable hooks", where each hook has a default
functor name that reflects the behaviour to be modified. Most of these hooks allow
access at points that are crucial to the normal running of the WIN-PROLOG

environment, so for each hook there is a corresponding built-in hook predicate that can
be used to hand control back to WIN-PROLOG and allow its normal behaviour to
continue.

WIN-PROLOG contains hooks that allow access to the behaviour of the system at the
following places:

• When an error occurs.

• When a keyboard break occurs.

• When the debugger is called.

• When an abort happens.

All of the programmable hooks have a functor name and a set arity that is known to
WIN-PROLOG. At each point where a programmable hook can take control, a check
is made to see if a user-defined program of this name exists. The hook names and
their corresponding built-in equivalents are shown in the table below. The descriptions
in this chapter use the default names for the hooks.

Default Hook Built-in Equivalent
'?ABORT?'/0 abort_hook/0
'?BREAK?'/1 break_hook/1
'?CHANGE?'/3 change_hook/3
'?DEBUG?'/1 debug_hook/1
'?ERROR?'/2 error_hook/2
'?FIND?'/3 find_hook/3
'?MESSAGE?'/4 message_hook/4
'?TIMER?'/3 timer_hook/3
Table 16 - Programmable hook names and their built-in equivalents

WIN-PROLOG Hooks

The following hooks allow access to error reporting, program breaks, debugging
programs and aborting programs.

Programmable Hooks and Handlers 135

Programming Guide

The programmable hooks all come into effect when a Prolog goal is interrupted. The
error, break and debug hooks include the actual goal that was being interrupted as one
of their arguments. If when one of these hooks is invoked you bind any of the variables
in the goal and the hook succeeds, this binding will be passed back to the interrupted
program. For example, a definition could be made for the '?ERROR?'/2 hook, which
catches the case where the low-level read predicate eread/1 generates an end of file
error. The hook could then bind the argument of eread/1 to the atom 'the end'.

'?ERROR?'(48,eread(X)):-
X = 'the end',
!.

'?ERROR?'(X,Y):-
error_hook(X,Y).

When a hook catches an interrupt in a program in this way, the program behaves as if
the hook actually appears in-line in the interrupted program. For example a program
could have the following code:

foo :-
bar,
eread(X),
sux(X).

Then, using the definition of the '?ERROR?'/2 hook shown above, if the call to eread/1
generates error 48 - End Of File, the code that is run will be equivalent to:

foo :-
bar,
'?ERROR?'(_,eread(X)),
sux(X).

where X will be bound to the atom 'the end'. Note: if the hook fails it is equivalent to
the in-line call failing which causes backtracking.

Error Hook

The error hook is called whenever an error is thrown to the system (for more
information on the reporting of errors see catch/2 and throw/2). The only errors that
cannot be caught by this hook are the memory errors (such as the program space full
error). This is due to the case where running any Prolog goal could cause a memory
error, which would include the Prolog goal that defined the error hook, thus causing a
perpetual unbreakable error loop.

The error hook should be a Prolog program of the form:

'?ERROR?'(Number, Goal) :-
Body...

where Number is the number of the error that was thrown and Goal is the goal that
threw the error.

136 Programmable Hooks and Handlers

Programming Guide

To pass errors through to LPA-PROLOG's default error handler, you can call
error_hook/2, which processes the error as normal. For example, the following
definition for the error hook will filter out 'predicate not defined errors', causing the
undefined predicate to fail. Any other error will be passed to the default error hook.

'?ERROR?'(20,Goal):-
!,
fail.

'?ERROR?'(ErrNum,Goal):-
error_hook(ErrNum,Goal).

Keyboard Break Hook

When a WIN-PROLOG program is running you can request that the program is
interrupted by pressing some special key combination on the keyboard. In WIN-
PROLOG and DOS-PROLOG this happens when the <ctrl-break> key is hit.

The break hook should be a Prolog program of the form:

'?BREAK?'(Goal) :-
Body...

where Goal is the goal that was interrupted.

To allow WIN-PROLOG to process break messages in its default manner you should
call break_hook/1. This puts up a dialog which displays the interrupted goal, and offers
the options of either resuming the evaluation or aborting.

In a stand-alone application you might not want end users to be able to break into it
while it is running. The following example disables breaks by simply continuing with any
call that is interrupted.

'?BREAK?'(Call) :-
Call.

Debug Hook

The debug hook is invoked whenever a spied predicate is called and debugging mode
is set to "debug".

The debug hook should be a Prolog program of the form:

'?DEBUG?'(Goal) :-
Body...

where Goal is the goal that was called and had a spypoint set.

The default debugger is debug_hook/1. This passes control to the currently set system
debugger.

Programmable Hooks and Handlers 137

Programming Guide

The following program for the debug hook will count the number of times a spied
predicate is called without calling the system debugger.

'?DEBUG?'(Call) :-
countcall(Call),
force(Call).

countcall(Goal):-
def(callnumber,2,_),
retract(callnumber(Goal,Number)),
NewNumber is Number + 1,
assert(callnumber(Goal,NewNumber)),
!.

countcall(Goal):-
assert(callnumber(Goal,1)).

When your program has finished, to find the number of times each spied predicate was
called, you could make the following call:

?- forall(callnumber(Goal,Number),
(
 write(Goal-Number),

 nl,
 retract(callnumber(Goal,Number))
)

).

Abort Hook

The abort hook is called every time a call to the predicate abort/0 is made. Note that
abort/0 is called by the default error hook. The hook should be a Prolog program of the
form:

'?ABORT?' :-
Body

To allow WIN-PROLOG to process abort conditions in its default manner you should
call abort_hook/0.

The following abort handler, upon an abort, removes any currently defined facts
associated with the system and then restarts the system from the beginning:

'?ABORT?' :-
write('restarting application...'),
abolish(runtime_facts/1),
start_mysystem.

where the predicate "runtime_facts/1" are facts that have been asserted during the
running of the application, and the user-defined program "start_mysystem/0" restarts
the user's application from the beginning.

138 Programmable Hooks and Handlers

Programming Guide

Appendix A - System Operators 139

Programming Guide

Appendix A - System Operators

Table 17 shows the complete set of built-in operators available in WIN-PROLOG.

Operator Precedence Type

volatile 1150 fx

?- 1200 fx

one 900 fx

+ 500 fx

- 500 fx

initialization 1150 fx

dynamic 1150 fx

public 1150 fx

mode 1150 fx

:- 1200 fx

multifile 1150 fx

meta_predicate 1150 fx

not 900 fy

spy 900 fy

nospy 900 fy

\+ 900 fy

@>= 700 xfx

< 700 xfx

@< 700 xfx

= 700 xfx

@= 700 xfx

140 Appendix A - System Operators

Programming Guide

> 700 xfx

@> 700 xfx

mod 300 xfx

:- 1200 xfx

=:= 700 xfx

is 700 xfx

\= 700 xfx

=\= 700 xfx

@\= 700 xfx

=< 700 xfx

== 700 xfx

@=< 700 xfx

--> 1200 xfx

\== 700 xfx

=.. 700 xfx

>= 700 xfx

, 1000 xfy

: 600 xfy

; 1100 xfy

^ 200 xfy

| 1100 xfy

-> 1050 xfy

~> 850 yfx

<~ 850 yfx

>> 400 yfx

// 400 yfx

Appendix A - System Operators 141

Programming Guide

* 400 yfx

+ 500 yfx

- 500 yfx

/ 400 yfx

/\ 500 yfx

\/ 500 yfx

<< 400 yfx

Table 17 - WIN-PROLOG built-in operators

142 Index

Programming Guide

Index

!/0, 48

,/2, 48

/1, 49, 100

definition, 34

:-, 32

;/0, 49

'?ABORT?'/0, 136

'?BREAK?'/1, 135

'?DEBUG?'/1, 135

?ERROR?/2, 74

'?ERROR?'/2, 134

~, escape character, 25

~>/2, 89, 105

<~/2, 89, 105

=../2, 100

->/2, 49

abolish_files/1, 96

abort hook, 136

abort/0, 52, 74, 75

Aborting programs, 52, 75

Absolute filenames, 79

Alphanumeric atoms, 20

Anonymous variables, 18

append/3, 93

Appending lists, 93

Arguments of a compound term, 23

Arithmetic, 36�41

expressions, 37

functions

*/2, 38

///2, 38

//2, 38

-/1, 38

-/2, 38

^/2, 38

+/2, 38

mod/2, 38

logarithmic functions

aln/1, 38

alog/1, 38

ln/1, 38

log/1, 38

random number function

rand/1, 40

square root function

sqrt/1, 38

Index 143

Programming Guide

trigonometric functions

acos/1, 38

asin/1, 38

atan/1, 38

cos/1, 38

sin/1, 38

tan/1, 38

truncation functions

abs/1, 39

fp/1, 39

int/1, 39

ip/1, 39

max/1, 39

min/1, 39

sign/1, 39

Arithmetic expressions, 37

Arities, 100

Arity, 23

Associativity of an operator, 28

at_end_of_file/0, 89

at_end_of_line/0, 89

atom_chars/2, 112

atom_string/2, 112

Atoms, 20, 102

alphanumeric, 20

converting, 104, 112

current, 98

dictionary, 70

maximum length, 103

maximum length of, 20

properties, 103

quoted, 21

special, 21

symbolic, 20

Backtracking

control, 48

Backus-Naur Form

grammar notation, 59

bagof/3, 101

beep/2, 92

BIOS Handling, 42

Body of a clause, 30

break/0, 52

break_hook/1, 135

Call term, 30

call/1, 100

catch/2, 76

Catching errors, 76

Char lists, 25, 102

converting, 104, 112

properties, 103

Character I/O, 91

Character set, 17

Chars

144 Index

Programming Guide

converting, 104, 112

Clause database, 118�20

compiled, 119

dynamic, 119

interpreted, 119

static, 119

Clauses, 30

body of, 30

head of, 30

Closing files, 79

Combining implication with disjunction,
49

Command line switches, 44

Command-line switches, 73

Commands, 32

Comments, 18

compile/1, 95

Compiled code, 119

Compound terms, 23

arguments of, 23

arity of, 23

functor of, 23

Condition meta-variables, 34

Configuration options, 43�46

File errors

fileerrors/0, 44

nofileerrors/0, 44

Style checking

no_style_check/1, 43

style_check/1, 43

system flags

prolog_flag/2, 44

prolog_flag/3, 44

system read prompt

prompt/2, 44

system switches

switch/2, 44

Conjunction of goals, 48

Control

!/0, 48

,/2, 48

/1, 49

;/0, 49

->/2, 49

abort/0, 52

aborting programs, 52

break/0, 52

conjunction, 48

cut, 48

disjunction, 49

fail/0, 51

failure, 51

false/0, 51

halt/0, 52

Index 145

Programming Guide

halt/1, 52

if-then, 49

if-then-else, 49

negation, 49, 50

not/1, 50

otherwise/0, 51

repeat/0, 51

repeat/1, 51

repeating clauses, 51

success, 51

suspending programs, 52

terminating prolog, 52

true/0, 51

Control characters, 21, 22

Control keys

status, 92

Control predicates, 47

Controlling backtracking, 48

Converting between text data types,
104, 112

copy/2, 91

Copying data from file to file, 91

Current operators

finding, 29, 115

current_atom/1, 98

current_op/3, 98, 115

current_op/3, find current operator, 29

current_predicate/1, 97

current_predicate/2, 97

Currently defined predicates, 71

Currently open files, 70

Currently open source files, 96

Currently used atoms, 70

Database predicates, 118

DCG notation, 56

debug hook, 135

debug_hook/1, 135

Debugger

setting, 54

Debugging, 53�55

debug/0, 54

leash/1, 54

leashed/1, 54

leashing, 54

ms/2, 55

no_style_check/1, 54

nodebug/0, 54

nospy/1, 54

nospyall/0, 54

notrace/0, 54

programs, 54

setting spypoints, 54

spy/1, 54

style checking, 54

146 Index

Programming Guide

style_check/1, 54

trace/0, 54

tracing, 54

Debugging programs, 54

Debugging status

setting, 45

Declaring operators, 29, 115

def/3, 98

Definite clause grammar, 56�69

Definite Clause Grammar rules, 56

defs/2, 98

Depth of write_term/[2,3]

setting, 45

Dialogs, 121�36

message_box/3, 131

dict/2, 70

Dictionaries, 70�71

atom, 70

dict/2, 70

fdict/2, 70

file, 70

pdict/4, 71

predicate, 71

Difference lists, 68

Directories, 77

Disjunction

in grammar rules, 60

Disjunction of goals, 49

DOS commands, 72

DOS handling, 72

command-line switches, 73

dos/0, 72

dos/1, 72

exec/3, 72

running DOS commands, 72

running shells, 72

switch/2, 73

ver/4, 73

version information, 73

DOS shells, 72

dos/0, 72

dos/1, 72

Dynamic code, 119

Dynamic predicates, 96

dynamic/1, 96

Edinburgh syntax. See Syntax

Empty list, 24, 25

ensure_loaded/1, 95

eprint/2, 114

eprint/3, 114

eread/2, 114

Error handling, 74�76, 74

?ERROR?/2, 74

abort/0, 74, 75

Index 147

Programming Guide

aborting current evaluation, 75

catch/2, 76

catching errors, 76

error_handler/2, 75

error_message/2, 75

example, 76

flush/0, 74, 75

input buffer flushing, 75

message numbers, 75

throw/2, 76

throwing errors, 76

unknown predicates, 75

unknown_predicate_handler/2, 75

user defined, 74

error hook, 134

Error message numbers, 75

Error messages, 75

Error numbers, 75

error_handler/2, 75

error_hook/2, 134

error_message/2, 75

Escape character

within char lists, 25

ewrite/2, 114

ewrite/3, 114

exec/3, 72

Executing a DOS command, 72

Exponent, 19

Expressions

arithmetic, 37

Facts, 30

fail/0, 51

Failure, 51

false/0, 51

fdict/2, 71

File error reporting, 44

File errors, 44

File extensions

setting, 45

File handling

absolute filenames, 79

closing, 79

logical, 79

low-level, 79

opening, 79

File pointers, 89

fileerrors/0, 44

Files, 77

copying data, 91

dictionary, 70

loading, 95

as dynamic, 96

positioning pointers, 89

saving, 96

148 Index

Programming Guide

source currently loaded, 96

text

finding, 89

skipping, 89

Files and directories, 77�79

find/3, 89

findall/3, 101

Finding sets of solutions, 101

Finding text in files, 89

Finding the index set on predicates,
128

First argument indexing, 125

Floating point numbers, 19

rounding errors, 36

flush/0, 74, 75

Flushing the input buffer, 75

Forcing failure, 51

Formatted I/O, 91

fread/4, 91

Free memory, 80, 82

free/9, 80

Functions

logarithmic, 38

random number, 40

square root, 38

trigonometric, 38

truncation, 39

Functor, 23

functor/3, 100

Functors, 100

fwrite/4, 91

Garbage collection

explicit, 81

garbage_collect/0, 81

garbage_collect/1, 81

gc/0, 81

nogc/0, 81

setting, 81

Garbage collection and memory, 80

garbage_collect/0, 81

garbage_collect/1, 81

gc/0, 81

get/1, 91

get0/1, 91

getb/1, 91

Getting memory statistics, 80, 81

Getting the date, 42

Getting version information, 82

getx/2, 91

Goals, 30

aborting, 52

conjunction, 48

disjunction, 49

failure, 51

Index 149

Programming Guide

logical negation, 50

negation as failure, 49

repeating, 51

success, 51

suspending, 52

grab/1, 91

Grammar, 57

notation, 59

Grammar rules, 32, 56, 57

adding calls to cut, 61, 65

adding extra arguments, 63

adding procedure calls, 60, 65, 68

disjunction, 60

for simple arithmetic expressions, 66

for simple English sentences, 61

generating sentences, 62

internal representation, 67

non-terminal symbols, 59, 60

parsing sentences, 61

syntax, 60

terminal symbols, 59, 60

halt/0, 52

halt/1, 52

Halting prolog, 52

Handling unknown predicates, 75

Head of a clause, 30

hooks

abort, 136

debug, 135

error, 134

keyboard break, 135

I/O, 83

~>/2, 89

<~/2, 89

at_end_of_file/0, 89

at_end_of_line/0, 89

characters, 91

copy/2, 91

copying data, 91

file position, 89

find/3, 89

formatted, 91

fread/4, 91

fwrite/4, 91

get/1, 91

get0/1, 91

getb/1, 91

getx/2, 91

grab/1, 91

inpos/1, 89

input/1, 87

new lines, 91

nl/0, 91

operators, 115

150 Index

Programming Guide

outpos/1, 89

output/1, 87

put/1, 91

putb/1, 91

putx/2, 91

redirecting, 89

see/1, 87

seeing/1, 87

seen/0, 87

setting I/O streams, 87

skip/1, 89

skip_layout/0, 89

skip_line/0, 89

standard input, 87

standard output, 87

stream_position/2, 89

stream_position/3, 89

tab/1, 91

tabs, 91

tell/1, 87

telling/1, 87

terms, 114

text

finding, 89

skipping, 89

told/0, 87

I/O streams

setting, 87

If-then, 49

If-then-else, 49

Indexing on first argument, 125

Infix operators, 27

initialization/1, 95

inpos/1, 89

Input and output, 83�91

Input and Output

Control Keys

keys/1, 92

sound output

beep/2, 92

Input buffer

flushing, 75

Input stream, 87

standard, 87

input/1, 87

Integers, 19

Interpreted code, 119

Keyboard

control keys, 92

keyboard break hook, 135

keys/1, 92

Knuth, 107

Leashing the debugger, 54

Left associative operators, 28

Index 151

Programming Guide

Length of lists, 93

length/2, 93

List handling, 93

append/3, 93

appending, 93

length, 93

length/2, 93

mem/3, 93

member/2, 93

member/3, 93

membership, 93

remove/3, 93

removeall/3, 93

removing elements, 93

reverse/2, 93

reversing, 93

List patterns, 24

Lists, 24

empty, 24, 25

load_files/1, 95

load_files/2, 95

Loading and saving, 94�96

:-, 95

abolish_files/1, 96

abolishing files, 96

compile/1, 95

declarations, 95

dynamic/1, 96

ensure_loaded/1, 95

initialization goals, 95

initialization/1, 95

load_files/1, 95

load_files/2, 95

multifile/1, 96

object-code, 95

reconsult/1, 95

save_files/2, 96

save_predicates/2, 96

source_file/1, 96

source_file/2, 96

source_file/3, 96

source-code, 95

Loading files

as dynamic, 96

object, 95

running goals, 95

source, 95

Loading programs, 94

Logarithmic functions, 38

Logical file handling, 79

Logical filename predicates, 78

Low-level file handling, 78

mem/3, 93

member/2, 93

152 Index

Programming Guide

member/3, 93

Membership of lists, 93

Memory

free, 80

free/9, 80

statistics, 81

statistics/0, 81

statistics/2, 81

Meta level predicates, 99

Meta level program, 99

Meta-programming, 99�100

=../2, 100

call/1, 100

functor/3, 100

Meta-variables, 33

as a condition, 34

as the predicate symbol, 34

ms/2, 42, 55

Multifile predicates, 96

multifile/1, 96

Multiple argument indexing, 127

Negation

as failure, 49

logical, 50

new lines, 91

nl/0, 91

no_style_check/1, 43, 54

nofileerrors/0, 44

nogc/0, 81

Non-terminal symbols (grammar), 59,
60

not/1, 50

Notations

grammar, 59

used in this manual, 15

Object format, 94

op/3, 29, 115

Opening files, 79

Operators, 26

associativity of, 28

current, 29, 98, 115

declaring, 29, 115

infix, 27

left associative, 28

postfix, 26

precedence of, 27

prefix, 26

right associative, 28

type of, 28

Optimised multiple argument indexing,
127

Optimising compiler, 121�36

index/2, 127

optimize/1, 125

optimize_files/1, 125

Index 153

Programming Guide

otherwise/0, 51

outpos/1, 89

Output stream, 87

standard, 87

output/1, 87

parse tree, 58, 64

Parsing, 58

pdict/4, 71

phrase/3, 61

Pointers

in files, 89

Positioning file pointers, 89

Postfix operators, 26

Prang, 40

Precedence of an operator, 27

Predicate meta-variable, 34

predicate_property/2, 98

Predicates

arity, 98

current, 97

dictionary, 71

dynamic, 96

indexing, 127, 128

multifile, 96

properties, 98

saving, 96

source files, 96

type, 98

type checking, 117

Prefix operators, 26

Program state, 97

current_atom/1, 98

current_op/3, 98

current_predicate/1, 97

current_predicate/2, 97

def/3, 98

defs/2, 98

predicate_property/2, 98

predicates, 97

Programs

aborting, 52

debugging, 54

loading and saving, 94

spypoints, 54

style checking, 54

suspending, 52

tracing, 54

Programs timing, 42

Prolog

halting, 52

prolog_flag/2, 44

prolog_flag/3, 44

prompt/2, 44

Properties of text data types, 103

154 Index

Programming Guide

put/1, 91

putb/1, 91

putx/2, 91

Quitting from prolog, 52

Quoted atoms, 21

Random number function, 40

Real numbers, 19

reconsult/1, 95

remove/3, 93

removeall/3, 93

Removing elements from lists, 93

repeat/0, 51

repeat/1, 51

Repeating a sequence of goals, 51

reverse/2, 93

Reversing lists, 93

Right associative operators, 28

Rounding errors, 36

Rules, 30

Running a DOS shell, 72

Running goals on loading, 95

save_files/2, 96

save_predicates/2, 96

Saving files, 96

Saving programs, 94

see/1, 87

seed/1, set random number seed, 40

seeing/1, 87

seen/0, 87

Separator, 17

setof/3, 101

sets, 101

Sets of solutions, 101

bagof/3, 101

findall/3, 101

setof/3, 101

Setting

debug mode, 54

debugger interaction, 54

debugging status, 45

depth of write_term/[2,3], 45

file extensions, 45

garbage collection, 81

spypoints, 54

style checking, 54

trace mode, 54

unknown predicate handling, 46

Setting I/O streams, 87

skip/1, 89

skip_layout/0, 89

skip_line/0, 89

Skipping text in files, 89

sort/2, 109

sort/3, 108

Index 155

Programming Guide

Sorting, 107, 108

Sound Output, 92

Sounds

output, 92

Source format, 94

source_file/1, 96

source_file/2, 96

source_file/3, 96

Special atoms, 21

Spypoints

setting, 54

Square root function, 38

Standard input stream, 87

standard ordering, 107

Standard output stream, 87

Static code, 119

statistics/0, 81

statistics/2, 81

stream_position/2, 89

stream_position/3, 89

Streams

input, 87

output, 87

String handling, 102�5

~>/2, 105

<~/2, 105

wedttxt/2, 104

string_chars/2, 112

Strings, 21

converting, 104, 112

I/O, 105

maximum length, 103

maximum length of, 21

notation, 21

properties, 103

redirection, 105

syntax, 103

Strings and windows, 104

Style checking, 43, 54

style_check/1, 43, 54

Success, 51

Suspending programs, 52

switch/2, 44, 73

Switches

command-line, 73

Symbolic atoms, 20

Syntax, 17�35

alphanumeric atoms, 20

anonymous variables, 18

atoms, 20

char lists, 25

clauses, 30

commands, 32

comments, 18

156 Index

Programming Guide

compound terms, 23

floating point numbers, 19

grammar rules, 32

integers, 19

lists, 24

meta variables, 33

of grammar rules, 60

operators, 26

quoted atoms, 21

rules, 30

separators, 17

special atoms, 21

strings, 21

symbolic atoms, 20

terms, 18

variable names, 18

System

configurations, 43

flags, 44

debug_file, 45

debugging, 45

debugging status, 45

depth of write_term/[2,3]:, 45

extensions, 45

flex_extension, 45

foreign_extension, 45

max_depth, 45

object_extension, 45

ppp_extension, 45

retrieving, 44

setting, 44

source_extension, 45

text_extension, 45

unknown, 46

unknown predicate handling, 46

switches, 44

System date, 42

System read prompt, 44

tab/1, 91

tabs, 91

tell/1, 87

telling/1, 87

Term comparison and sorting, 106�10

sort/2, 109

sort/3, 108

Term conversion, 111�12

atom_chars/2, 112

atom_string/2, 112

string_chars/2, 112

Term I/O, 113�15

eprint/2, 114

eprint/3, 114

eread/2, 114

ewrite/2, 114

Index 157

Programming Guide

ewrite/3, 114

Term type checking, 116�17

Terminal symbols (grammar), 59, 60

on the left of a grammar rule, 69

Terminating prolog, 52

Terms, 18

type, 117

Text data types

converting, 104, 112

properties, 103

The internal hardware clock, 42

throw/2, 76

Throwing errors, 76

Tilde escape character, 25

Time stamps, 42

Timing

programs

ms/2, 42

Timing programs, 42

told/0, 87

Tracing programs, 54

Transferring data from file to file, 91

Trigonometric functions, 38

true/0, 51

Truncation functions, 39

Type checking

bounded integers, 117

Type checking predicates, 117

Type of an operator, 28

univ, 100

Unknown predicate handling, 75

setting, 46

unknown_predicate_handler/2, 75

Variable names, 18

Variables

anonymous, 18

ver/1, 82

ver/4, 73, 82

Version

statistics, 82

ver/1, 82

ver/4, 82

Version information, 73

wedttxt/2, 104

	WIN-PROLOG Programming Guide
	Contents
	Programming Guide Contents
	WIN-PROLOG Programming Guide	2

	Introduction
	Features of WIN-PROLOG
	Notation Conventions
	Predicate Definitions
	Mode Declarations
	Prolog Listings
	Argument References
	Tables of Information
	Predicate References

	References

	Syntax
	Character Set
	Separators and Terminators
	Comments
	Terms
	Variable Names
	Integers
	Floating Point Numbers
	Number Bases
	Atoms
	Alphanumeric Atoms
	Symbolic Atoms
	Quoted Atoms
	Special Atoms
	Strings
	Compound Terms
	Tuples
	Lists
	Conjunctions
	Disjunctions
	Char Lists
	Operators
	Prefix Operators
	Postfix Operators
	Infix Operators
	Operator Precedence
	Operator Types
	Declaring Operators
	Program Structure
	Clauses
	Grammar Rules
	Commands
	Meta-variables
	Extended Meta-variable Facilities in WIN-PROLOG
	Condition Meta-variable
	Predicate Meta-variable

	Arithmetic
	Predicates Related to Arithmetic
	Pseudo Random Number Generator
	The Linear Congruential Method
	Seeding the Prang
	Randomising the Prang

	Timing
	Predicates Related to Timing
	Timing Programs and Time Stamps

	Configuration Options
	Predicates Related to Configuration Options
	Turning Style Checking On and Off
	Turning the Reporting of File Errors On and Off
	Changing or Getting the Prolog Read Prompt
	Retrieving or Setting a WIN-PROLOG Switch
	System flags

	Control
	Predicates Related to Control
	Conjunction
	Disjunction
	If-Then
	If-Then-Else
	Negation as Failure
	Forcing Failure
	Success
	Repeating Sequences of Clauses
	Aborting Programs
	Suspending Programs
	Terminating Prolog

	Debugging
	Predicates Related to Debugging
	Setting the Current Debugger
	Tracing and Debugging Programs
	Setting Spypoints
	Setting and Checking the Interaction with the Debugger
	Program Style Checking
	Timing Programs

	Definite Clause Grammar
	Predicates Related to Definite Clause Grammar
	Parsing and Parse Trees
	Grammar Notations
	DCG Notation
	A Simple Example
	Adding Extra Arguments to DCG Rules
	Adding Extra Tests to DCG Rules
	A More Complex Example
	The Prolog Representation of the Grammar Rules
	Terminal Symbols on the Left-Hand Side of a Rule

	Dictionaries
	Predicates Related to Dictionaries
	The File Dictionary
	The Predicate Dictionary

	DOS Handling
	Predicates Related to DOS Handling
	Running a Command
	Retrieving Command-Line Switches
	Getting Information about WIN-PROLOG

	Error Handling
	Predicates Related to Error Handling
	Aborting the Current Evaluation
	Flushing the Input Buffer
	Defining an Unknown Predicate Handler
	Getting the Error Messages and Their Numbers
	Catching and Throwing Errors
	Error Handling - An Example

	Files and Directories
	Predicates Related to Files and Directories
	Logical File Handling
	The File Search Path Mechanism
	Getting Absolute Filenames
	Opening Files
	Closing Files

	Low-level File Handling

	Garbage Collection and Memory
	Predicates Related to Garbage Collection and Memory
	Determining Free Memory
	Garbage Collection
	Getting Program Space Statistics
	Getting Version statistics

	Input and Output
	Predicates Related to Input and Output
	Predicates for Setting I/O Streams

	Standard and Current I/O Streams
	Setting I/O Streams
	Temporarily Redirecting I/O
	Positioning File Pointers
	Testing Input Boundary Conditions
	Finding Text in an Input Stream
	Setting the Stream Pointer Positions

	Formatted I/O
	Character I/O
	Outputting Format Characters
	Copying Data From File To File
	Keyboard Input
	Interpreting Control Keys

	Sound Output

	List Handling
	Predicates Related to List Handling

	Loading and Saving
	Predicates Related to Loading and Saving
	Running Goals Upon Loading
	Loading Predicates From a Source File as Dynamic
	Predicates Defined In More Than One File
	Saving Files
	Maintaining Source Files
	Abolishing Files

	Looking at the Program State
	Predicates Related to Looking at the Program State
	Currently Defined Atoms
	Currently Defined Operators
	Getting the Type and Arity of a Predicate
	Getting the Arity of Currently Defined Predicates

	Meta-Programming
	Predicates Related to Meta-Programming
	Meta-Programming

	Sets of Solutions
	Predicates Related to Sets of Solutions

	String Handling
	Predicates Related to String Handling
	Atoms and Char lists
	Strings
	Properties of the Text Data Types
	Atom, Char list and String Conversions
	Strings and Window Handling
	Window Handling in WIN-PROLOG and DOS-PROLOG

	Strings and Input/Output

	Term Comparison and Sorting
	Predicates Related to Term Comparison and Sorting
	Unify

	Standard Ordering
	Sorting on Keys
	Sorting and Duplicate Removal
	Checking

	Term Conversion
	Predicates Related to Term Conversion
	Converting Between Atoms and Strings
	Converting Between Char lists and Strings

	Term Input and Output
	Predicates Related to Term Input and Output
	Declaring Operators

	Term Type Checking
	Predicates Related to Term Type Checking
	Type Checking Predicates
	Testing For an Integer Between Bounds
	Switching According to The Types Of Terms

	The Clause Database
	Predicates Related to The Clause Database

	Types of Compilation
	Incremental Compilation: Clause by Clause
	Hashed Compilation: Instant Access
	Optimised Compilation: Relation by Relation
	First Argument Indexing
	The Comparison: Head to Head

	T
	The Optimising Compiler
	Predicates Related to The Optimising Compiler
	Multiple Argument Indexing in the Optimising Compiler
	Checking the Index of a Predicate

	Data Compression and Encryption
	Predicates related to data compression and encryption

	Built-in Dialogs
	Predicates Related to Dialogs

	Programmable Hooks and Handlers
	WIN-PROLOG Hooks
	Error Hook
	Keyboard Break Hook
	Debug Hook
	Abort Hook

	Appendix A - System Operators
	Index

